Elasticities of Related-party Trade

Eric Hsienchen Chu University of Wisconsin-Madison

Introduction

Question. How do Multinationals (MNEs) respond differently to short-run tariff shocks?

- What do we expect from MNE?
 - ⊛ Two opposite forces for MNEs' import demand upon trade shocks:
 - (-) : higher trade costs and/or trade diversion
 - (+) : intrafirm rigidity (e.g. contracts) and/or adjustment costs
- Yet, the effects are not quite clear at this moment
- A puzzle of MNEs' trade patterns and shock response!

- How? It turns out the puzzle is tractable via exploring related-party import elasticity (σ).
- Exogeneous Tariff shock: the 2017-18 Trump tariffs
- The contributions are threefold:
 - (1) (Channel). Refine the short-run shock responses "trade elasticity" by related-party channel (σ_{MNE}) and arms-length channel (σ_{NMNE}).
 - (2) (Related-party elasticity). Estimated $\sigma_{MNE} \in [-1.578, -1.955]$ and is more elastic than NMNEs' ($|\sigma_{NMNE}| < |\sigma_{MNE}|$).
 - (3) (Implication). MNE importers being *more responsive* to $\Delta \tau$ than NMNEs may reflect the "profit-shifting" process.

- Key literatures: Amiti et al. (2019) (Trump 2017-18 tariffs, elasticity and welfare) & Cox (2023) (Bush 2003-04 Steel tariffs shocks and persistent response)
- This related-party elasticity exercise finds the connection between the above two studies. (Heterog. Rp share [?]→ Heterog. responses)
- Several more studies for empirical & theoretical guidance:
 - Elasticity & Welfare: Fajgelbaum et al. (2020) (Comprehensive study of the Trump tariffs), Alvarez and Lucas (2007)
 - MNEs & Intrafirm: Ramondo et al. (2016), Bernard et al. (2006), Ruhl (2015) (intrafirm measurement), Costinot and Rodríguez-Clare (2014) (Structural trade theory), Antràs et al. (2017) (Structural MNEs)
 - * Intl Finance: Engel and Wang (2011) (Durable vs nondurable)

Empirical Framework

Two datasets are used to compute elasticity of MNE:

- Amiti et al. (2019)
 - Monthly data on U.S. imports and tariffs from Jan 2017 to Dec 2018
 - Get: import changes (Δq), tariff changes ($\Delta \tau$), before-duty prices (Δp).¹
- Related Party Time Series Data
 - Annual records of bilateral related-party trade imports and exports.
 - Calculate: Share of related-party imports (α_r) :²

$$\% \text{RelatedParty} := \frac{v_{ijt}^r}{v_{ijt}} = \frac{v_{ijt}^r}{v_{ijt}^r + v_{ijt}^a} \equiv \alpha_r \tag{1}$$

¹To be more concise, $\Delta \mathbf{q} \equiv \Delta \ln q_{ijt}$, $\Delta \tau \equiv \Delta \ln 1 + \tau_{ijt}$, and $\Delta \mathbf{p} \equiv \Delta \ln p_{ijt}$. Also see Table 2.

 $^{^{2}}$ In Table 1 summary statistics I did not multiply it by 100. Also see Antràs and Yeaple (2014) Section 7 Table (2.5). Here I restrict imports to be decomposed into **related-party** and arms-length parts.

- Why calculating α_r? The share of related-party imports helps define MNEs and proxy their trade elasticities (i.e., shock responses).³
- Definition.(MNE) Let firms source α_r ∈ [0, 1] share of goods from their foreign affiliates/related parties. A firm is a MNE iff α_r ∈ (0, 1].⁴
- Remark. (α_r = 0) None of imported goods are related-party → NMNE.
 Remark. Since MNE has α_r > 0, I define α_r⁺ ≡ median(α_r; α_r > 0).

³See Appendix A.1 Proof of Concept.

⁴I titled it "Second-best" definition since the first-best is to identify MNE shipment from firm-level data.

• This paper proceeds with this specification:⁵

$$\Delta \mathbf{q} = \phi_B \Delta \tau + \phi_{MNE} \Delta \tau \times \% \text{RelatedParty} + \mu_i + \zeta_{it} + \xi_{ijt}, \tag{2}$$

⁵Recall, $\Delta \mathbf{q} \equiv \Delta \ln q_{ijt}$, $\Delta \tau \equiv \Delta \ln 1 + \tau_{ijt}$, and $\Delta \mathbf{p} \equiv \Delta \ln p_{ijt}$. μ_{j} : commodity (HS10) fixed effect. ζ_{it} : country × time fixed effect. ξ_{ijt} : unobserved Supply/Demand shocks. Clustered-robust standard errors at HS8. Also see Draft Section 3.2 Strategy (A2).

For notation ease, let's rewrite Equation (2) as:

$$\Delta \mathbf{q} = \phi_B \Delta \boldsymbol{\tau} + \phi_{MNE} \Delta \boldsymbol{\tau} \cdot \boldsymbol{\alpha_r} + (\mathsf{FEs}) + \boldsymbol{\xi}$$
(3)

• Empirical assumptions :

- (1) Idiosyncratic shocks: the Trump tariffs ($\Delta \tau$) were *unanticipated* (exog.) and uncorrelated to unobserved $\boldsymbol{\xi}$.⁶
- (2) Matched moment: let α_r be exogeneously endowed.
- ③ Complete pass-through: no impact of tariffs to before-duty prices.
- *Potential Threats to Identification if time permitted.⁷

⁶Also see discussion in Amiti et al. (2019), Fajgelbaum et al. (2020), Cox (2023)

⁷ \circledast Simultaneity? Instrument duty-inclusive prices by $\Delta \tau$. \circledast Tariff Anticipation? ① is a *strong* assumption. \circledast Tariff pass-through? Supportive evidence in Table 1.

 Table 1: IMPACT OF THE TRUMP TARIFFS, RELATED-PARTY (PARTIAL)

	0	-diff uty Prices	log-diff Import Quantities				
	Δ	7b	$\Delta \mathbf{q}$				
	(1)	(2)	(3)	(4)	(5)		
Δau	-0.012 (0.023)	-0.057 (0.038)	-1.802*** (0.327)	-0.854* (0.499)	-1.551*** (0.413)		
$\Delta oldsymbol{ au} imes \%$ RelatedParty		0.113 (0.069)		-2.422** (0.965)			
$\Delta au imes \mathbb{1}$ HighRelatedParty					-0.404 (0.428)		
σ _{NMNE}			-1.802	-0.854 -1.578	-1.551		
σ _{MNE} N	1,647,617	1,641,326	2,473,895	2,464,296	-1.955 2,473,895		

Note: Clustered SE at HS8 level, with Commodity & Country \times Time FE. Also see Appendix B.1 for more details.

- Recall, my goal is to learn about shock response
- WANT. σ_{NMNE} and σ_{MNE}
- Under the assumptions on $\Delta \tau$, α_r and ξ , I can recover the elasticities by:

$$\sigma(\phi; \alpha) = \begin{cases} \sigma_{NMNE} = \phi_B \\ \sigma_{MNE} = \phi_B + \phi_{MNE} \cdot \tilde{\alpha}_r^+, \end{cases}$$
(4)

where ϕ 's identified in OLS.⁸

⁸Logic is to fix $\alpha \longrightarrow \phi$ identified $\longrightarrow \sigma(\phi; \alpha)$ recovered. I am still working on the dimensionality. See Appendix A.2 for the derivation. Also see Appendix A.4. for an attempt of Monotone Comparative Statics.

Table 2: SUMMARY OF ESTIMATION STRATEGY

Notations	Concept	Known?
$\Delta \mathbf{q} \equiv \Delta \ln q_{ijt}$	12-month log changes of import quantities	\checkmark
$\Delta au \equiv \Delta \ln \left(1 + au_{ijt} ight)$	12-month log changes of tariffs	\checkmark
$\Delta \mathbf{p} \equiv \Delta \ln p_{ijt}$	12-month log changes of before-duty import prices	\checkmark
т	MNE concentration $m \in [0, M]$	No, but $\cong \alpha_r$
α_r	Share of Related-party Imports $lpha_r \in [0,1]$	\checkmark
$\tilde{\alpha}_r^+$	Median of non-zero Share of Related-party Imports	0.299
ϕ_B	Standalone effect of tariff changes on import quantities	Est. by OLS
ϕ_{MNE}	Differential effect of tariff changes $\times \alpha_r$ on import quantities	Est. by OLS
Parameters of Interest		
σ_{NMNE}	Trade elasticities of Non-multinationals (calculated by $\sigma(\phi; 0))$	ϕ_B
σ_{MNE}	Trade elasticities of Multinationals (calculated by $\pmb{\sigma}(\phi; ilde{lpha}_r^+))$	$\phi_{\mathcal{B}} + \phi_{\mathcal{MNE}} \cdot \tilde{\alpha}_r^+$

Note: See Appendix B.2 and B.3 for a case study of steel-specific. Also see Draft for more details.

Motivation. How do MNEs respond differently to short-run tariff shock?

Contribution. Refine the short-run shock responses "elasticity" by related-party channel (σ_{MNE}) and arms-length channels (σ_{NMNE}).

(Related-party elasticity). Import demand of MNE (related-party) is more elastic than NMNEs' ($|\sigma_{NMNE}| < |\sigma_{MNE}|$), monotonically increasing in α_r .

(Implication: Shock Response). MNE importers are more responsive to $\Delta \tau$ than NMNE, monotonically increasing in α_r (fixed foreign supply).

- 1 Why? May reflect "profit-shifting," better ability to switch sourcing origins
- (2) The "more responsive" drop of MNE imports \longrightarrow profit-shifting process to alternative origins?
- (3) Built on (1), profit-shifting is increasing in α_r

- Push forward on the policy implications
 - $\circledast\,$ MNE: what clusters are really reducing the imports?
 - PM: What's the efficiency/goal of tariff policy if MNE can do profit-shifting? What about home production?
- Investigate the MNE sourcing dynamics
 - \circledast Modeling π -max MNEs
 - * Uncertainty affects imports diversion or intermediates prod reshoring?
 - $\circledast \ \#$ of origins; up/downstreams; labor/capital-intensive industry
- Refine the intrafirm measurements (connect to Ruhl (2015))
 - $\circledast\,$ This paper is an attempt to proxy MNEs without firm-level data.
- Add more years of data to see shock responses (connect to Cox (2023))
- Construct structural parameters (connect to Fajgelbaum et al. (2020))

References

- Alvarez, F., & Lucas, R. E. (2007). General equilibrium analysis of the eaton–kortum model of international trade. Journal of Monetary Economics, 54(6), 1726–1768. https://doi.org/10.1016/j.jmoneco.2006.07.006
- Amiti, M., Redding, S. J., & Weinstein, D. E. (2019). The impact of the 2018 tariffs on prices and welfare. *Journal of Economic Perspectives*, 33(4), 187–210. https://doi.org/10.1257/jep.33.4.187
- Antràs, P., Fort, T. C., & Tintelnot, F. (2017). The margins of global sourcing: Theory and evidence from us firms. American Economic Review, 107(9), 2514–64. https://doi.org/10.1257/aer.20141685
- Antràs, P., & Yeaple, S. R. (2014). Chapter 2 multinational firms and the structure of international trade. In G. Gopinath, E. Helpman, & K. Rogoff (Eds.), Handbook of international economics (pp. 55–130, Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-444-54314-1.00002-1
- Bernard, A. B., Jensen, J. B., & Schott, P. K. (2006, August). Transfer pricing by u.s.-based multinational firms (Working Paper No. 12493). National Bureau of Economic Research. https://doi.org/10.3386/w12493
- Costinot, A., & Rodríguez-Clare, A. (2014). Chapter 4 trade theory with numbers: Quantifying the consequences of globalization. In G. Gopinath, E. Helpman, & K. Rogoff (Eds.), Handbook of international economics (pp. 197–261, Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-444-54314-1.00004-5
- Cox, L. (2023, February). The long-term impact of steel tariffs on u.s. manufacturing (Working Paper).
- Engel, C., & Wang, J. (2011). International trade in durable goods: Understanding volatility, cyclicality, and elasticities. *Journal of International Economics*, 83(1), 37–52. https://doi.org/10.1016/j.jinteco.2010.08.007
- Fajgelbaum, P. D., Goldberg, P. K., Kennedy, P. J., & Khandelwal, A. K. (2020). The return to protectionism. The Quarterly Journal of Economics, 135(1), 1–55. https://doi.org/10.1093/qje/qj2036
- Ramondo, N., Rappoport, V., & Ruhl, K. J. (2016).Intrafirm trade and vertical fragmentation in u.s. multinational corporations. Journal of International Economics, 98, 51–59. https://doi.org/10.1016/j.jinteco.2015.08.002
- Ruhl, K. J. (2015). How well is us intrafirm trade measured? American Economic Review, 105(5), 524–29. https://doi.org/10.1257/aer.p20151045

Appendix A: Empirical Framework

- To define MNE in the second-best setting, I have not yet shown but taken advantage of relating **share of related-party imports** to **MNE concentration** already.
- Assumption.(Data) By reordering, the MNE concentration m ∈ ℝ₊ has sup m = M, E |M| < ∞ (finite), M ≠ 0, in data.
- Proposition. The MNE concentration m ∈ [0, M] is order isomorphic to the share of related-party trade α_r ∈ [0, 1].
- **Remark.** The idea is to (hopefully) use the share of related-party imports (α_r) to later help proxy trade elasticities of Multinationals (σ_{MNE}) .

Proof.

We need to show there exists an affine transformation from m onto α_r and check if the ordering is preserved. By **Assumption.** (Data) and Heine-Borel Theorem, $[0, \mathcal{M}] \subseteq \mathbb{R}$ is compact. So, any continuous function defined on $[0, \mathcal{M}]$ attains its min/max values. Let's consider the simplest possible affine transformation $\alpha_r = \varphi(m) = \frac{1}{\mathcal{M}}m, m \in [0, \mathcal{M}]$. Note that:

- ① The supp of α : $\frac{1}{M}m \in [0,1]$ for all $m \in [0,\mathcal{M}]$ and attains min/max (\checkmark)
- (2) Bijection: automatically true since $\varphi(\cdot)$ is linear (\checkmark)
- (3) Ordering: take $m_1 \leq m_2, m_1, m_2 \in [0, \mathcal{M}]$. Since $\mathcal{M} \neq 0$ and $\frac{1}{\mathcal{M}} > 0$, we have $\alpha_{r,1} = \frac{1}{\mathcal{M}}m_1 \leq \frac{1}{\mathcal{M}}m_2 = \alpha_{r,2}$ (\checkmark)

We conclude that $\alpha_r = \varphi(m)$ is one affine transformation that preserves order-isomorphic property from *m* to α_r .

Appendix A.2 Elasticities for Non/Multinationals

Denote $\Delta \mathbf{q} \equiv \Delta \ln q_{ijt}$, $\Delta \tau \equiv \Delta \ln (1 + \tau_{ijt})$, $\alpha_r \equiv \% RelatedParty$. Then, Equation (2) becomes:

$$\Delta \mathbf{q} = \phi_B \Delta \tau + \phi_{MNE} \Delta \tau \cdot \alpha_r + \mu_j + \zeta_{it} + \xi_{ijt}$$
(5)

Under our empirical assumptions on $\Delta \tau$, α_r and ξ , we obtain the CEF:

$$\mathbb{E}[\Delta \mathbf{q} | \Delta \boldsymbol{\tau}, \alpha_r] = \mathbb{E}[\phi_B \Delta \boldsymbol{\tau} + \phi_{MNE} \Delta \boldsymbol{\tau} \cdot \alpha_r + \mu_j + \zeta_{it} + \xi_{ijt} | \Delta \boldsymbol{\tau}, \alpha_r] \quad (6)$$

$$= \mathbb{E}\left[\phi_B \Delta \tau + \phi_{MNE} \Delta \tau \cdot \alpha_r | \Delta \tau\right] + \mathbb{E}[\xi_{ijt} | \Delta \tau, \alpha_r]$$
(7)

$$= \mathbb{E}\left[\left(\phi_B + \phi_{MNE} \cdot \alpha_r\right) \Delta \tau | \Delta \tau, \alpha_r\right] + 0 \tag{8}$$

$$= \mathbb{E}\left[\left(\phi_B + \phi_{MNE} \cdot \alpha_r\right) \Delta \tau | \Delta \tau, \alpha_r\right]$$
(9)

$$= (\phi_B + \phi_{MNE} \cdot \alpha_r) \Delta \tau \tag{10}$$

$$= \underbrace{\begin{pmatrix} 1 & 0 \\ 1 & \alpha_r \end{pmatrix}}_{=\alpha} \underbrace{\begin{pmatrix} \phi_B \\ \phi_{MNE} \end{pmatrix}}_{=\phi} \Delta \tau \leftarrow \text{ stack 2 eqns with boundary cond}(11)$$

$$\equiv \sigma(\phi;\alpha)\Delta\tau \tag{12}$$

16/22

• Let's focus on $\alpha_r \in (0,1]$ (in particular $\tilde{\alpha}_r^+$) and the CEF:

$$\mathbb{E}[\Delta \mathbf{q} | \Delta \tau, \alpha] = \sigma(\phi; \alpha) \Delta \tau \tag{13}$$

 $\implies \text{Fixed } \alpha \text{ (p.d.), I have 2 unknowns } (\phi's) \text{ with 2 equations} \\ \implies \phi \text{ identified via OLS } \implies \text{ can calculate } \sigma(\phi; \alpha)!$

• Thus, the final step is to recover elasticities $\sigma(\phi; \alpha)$:

$$\sigma(\phi; \alpha) = \begin{cases} \sigma_{NMNE} = \phi_B \\ \sigma_{MNE} = \phi_B + \phi_{MNE} \cdot \tilde{\alpha}_r^+ \end{cases}$$
(14)

⁹Also see Appendix A.4. Monotone Comparative Statics.

Table 3: SUMMARY STATISTICS, RELATED-PARTY TRADE (FULL)

	mean	sd	min	p25	p75	max
Total Imports	81.70	906.41	0.00	0.03	7.60	78398.92
Related-party Imports	40.47	601.18	0.00	0.00	1.28	48329.58
Non related-party Imports	41.23	485.62	0.00	0.02	4.31	59038.40
1 { Related-party Imports } t	0.61	0.49	0.00	0.00	1.00	1.00
% RelatedParty	0.25	0.33	0.00	0.00	0.45	1.00
Total Trade Balance	-44.68	875.44	-77986.20	-1.62	1.84	27524.11
Related-party Trade Balance	-27.50	552.13	-48329.58	-0.27	0.05	9460.98
Non related-party Trade Balance	-17.83	499.37	-58686.64	-0.59	1.98	22232.32
1 { Related-party Trade Balance } t	0.42	0.49	0.00	0.00	1.00	1.00
			Obs = 5	8988		
Lagged status						
$1 \{ \text{Related-party Imports} \}_{t=1}^{t}$	0.65	0.48	0.00	0.00	1.00	1.00
$\mathbb{1}{\text{Related-party Trade Balance}_{t-1}}$	0.44	0.50	0.00	0.00	1.00	1.00
	Obs = 52956					

Note: The data is obtained from the Related Party Time Series, with a sample period 2017-2018. Units in million.

Appendix A.4 MCS of Elasticity function

Definition. (Single-crossing) $f : \mathbb{R}^2 \to \mathbb{R}$ satisfies single-crossing (SC) if $\forall x' > x, t' > t \in T$, we have $f(x'; t) - f(x; t) > 0 \implies f(x'; t') - f(x; t') > 0$ and the " \geq " version.

Proposition. $\sigma(\phi; \alpha) : \mathbb{R}^2 \to \mathbb{R}$ satisfies SC in absolute values.

Proof.

I show strict version. Since ϕ_B is a common term, let's focus on ϕ_{MNE} . Take $\phi_{MNE,1} < \phi_{MNE,2}$ (in abs value) and $\alpha_1 \ll \alpha_2$. We have:

$$0 < \boldsymbol{\sigma}(\phi_{MNE,2}; \boldsymbol{\alpha}_1) - \boldsymbol{\sigma}(\phi_{MNE,1}; \boldsymbol{\alpha}_1) = (\phi_B + (\phi_{MNE,2} - \phi_{MNE,1}) \cdot \boldsymbol{\alpha}_{r,1})$$

$$< (\phi_B + (\phi_{MNE,2} - \phi_{MNE,1}) \cdot \boldsymbol{\alpha}_{r,2})$$

$$= \boldsymbol{\sigma}(\phi_{MNE,2}; \boldsymbol{\alpha}_2) - \boldsymbol{\sigma}(\phi_{MNE,1}; \boldsymbol{\alpha}_2)$$

Proposition. $\sigma(\phi; \alpha) : \mathbb{R}^2 \to \mathbb{R}$ is increasing in α_r in SSO in absolute value. **Proof.** Apply Milgrom-Shannon Thm to $|\sigma(\phi; \alpha)|$ and note $|\sigma|$ is OLS maximizer.

Appendix B: Estimation Results

Table 4: IMPACT OF THE TRUMP TARIFFS, RELATED-PARTY (FULL)

	$\frac{\log - \text{diff}}{Foreign \ Exporter \ Prices}}$			log–diff Import Quantities	log–diff Import Values		
			$\Delta \ln q_{ijt}$			$\Delta \ln (p_{ijt} \times q_{ijt})$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$\Delta \ln(1 + \tau_{ijt})$	-0.012 (0.023)	-0.057 (0.038)	-1.802*** (0.327)	-0.854* (0.499)	-1.551*** (0.413)	-1.597*** (0.340)	0.164 (0.549)
$\Delta \ln(1 + \tau_{ijt}) \times \%$ RelatedParty	(0.020)	0.113 (0.069)	()	-2.422** (0.965)	(0)	(0.0.0)	-4.430*** (1.146)
$\Delta \ln(1 + \tau_{ijt}) \times 1$ HighRelatedParty					-0.404 (0.428)		
σ for Non-MNE			-1.802*** (0.327)	-0.854* (0.499)	-1.551*** (0.413)		
σ for MNE			-1.802*** (0.327)	-1.578*** (0.341)	-1.955*** (0.370)		
Commodity FE Country × Time FE	Yes Yes	Yes Yes	Yes	Yes Yes	Yes	Yes Yes	Yes Yes
N	1,647,617	1,641,326	2,473,895	2,464,296	2,473,895	2,473,895	2,464,296

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. The elasticities of MNE in Column 3–5 are recovered by the median = 0.299 for all non-zero share of related-party imports, and their point estimates are reported. Standard errors in parentheses are clustered at the HTS8 level, respecting that tariff variations for some commodities only happened at the HTS8 aggregation. Also see Draft for more details.

Table 5: Related-party Trade Elasticity, Steel Industry (Full)

				log-diff Import	Quantities			
		General:	∆ In q _{ijt}	Steel Industry: $\Delta \ln q_{ijt}^{steel}$				
	Reduced form		Structural		Reduced form		Structural	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta \ln(1 + \tau_{jjt})$	-1.802***	-0.854*			-2.509**	0.192		
5-	(0.327)	(0.499)			(1.100)	(1.694)		
$\Delta \ln(1 + \tau_{jjt}) \times \%$ RelatedParty		-2.422**				-6.368*		
		(0.965)				(3.518)		
$\Delta \ln(\tilde{p}_{iit})$			-11.234***	-9.787***			-65.735**	-66.186**
() <i>j</i> L			(2.038)	(2.884)			(28.809)	(29.077)
			[54.92]	[31.93]			[1.54]	[0.92]
$\Delta \ln(\tilde{p}_{ijt}) \times \%$ RelatedParty				-2.501				-13.139
				(3.543)				(9.363)
				[38.44]				[40.57]
σ for Non-MNE	-1.802***	-0.854*	-11.234***	-9.787***	-2.509**	0.192	-65.735**	-66.186**
	(0.327)	(0.499)	(2.038)	(2.884)	(1.100)	(1.694)	(28.809)	(29.077)
σ for MNE	-1.802***	-1.578***	-11.234***	-10.535***	-2.509**	-3.119***	-65.735**	-73.018**
	(0.327)	(0.341)	(2.038)	(2.200)	(1.100)	(1.199)	(28.809)	(29.348)
Commodity FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Country \times Time FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
N	2,473,895	2,464,296	2,473,895	2,464,296	73,295	73,295	73,295	73,295

Note: * p < 0.10, ** p < 0.05, *** p < 0.01. Column 3–4 and 7–8 follow Fajgelbaum et al. (2020) to estimate the structural trade elasticity for MNEs (unit values instrumented by tariff changes). The first-stage F statistics are reported in square brackets. The elasticities of MNEs in Column 1–4 are recovered by med(α_+) = 0.299. The elasticities of MNE in Column 5–8 are recovered by the steel-specific med^{steel}(α_+) = 0.520. Standard errors in parentheses at the HTS8 level. Also see Draft for more details.

- (Related-party). I found that demand of related-party (MNE) imports is more *elastic* than NMNEs' (|σ_{NMNE}| < |σ_{MNE}|).
- (Welfare implication). Under complete pass-through, domestic importers bear entire tariff burdens. Holding foreign supply fixed, MNE importers suffer *less* tariff incidence (more responsive to $\Delta \tau$) among importers.
- (Case: Steel manufacturing). Steel import demand is estimated to be more *elastic* than general imports $(|\sigma| < |\sigma^{steel}|)$.
 - Within industry, related-party imports are the main drivers of its industry-level elasticity.
 - MNE imports estimated to be more *elastic* than the NMNE counterparts $(|\sigma_{NMNE}^{steel}| < |\sigma_{MNE}^{steel}|).$