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1 Introduction - Why Networks?

Overview. General framework:
• Dyad level (O(n2)): study pairwise relations between actors, e.g., whether have ties

(basic).

• Node level (O(n1)): study aggregations of dyad-level measurements, e.g., counting
the number of ties

• Network level (O(n0)): e.g., well-connected networks tend to diffuse ideas faster?

Definition 1.1 (Interactions and Flows). Interactions are behaviors with respect to others
and (often) observable by third parties. Flows are the outcomes of interactions.

Remark. Goal of SNA is to identify and describe the structure of network or capture
aspects of individual’s positions in the network.

2 Mathematical Foundations

2.1 Graphs

Motivation. All the instances of network analysis have in common is the branches of
graph theory and matrices.

Definition 2.1 (Graph). A graph G(V, E) consists of a set of vertices V (i.e., nodes) and a
set of edges E (i.e., links). We denote (i, j) ∈ E(G) as the vertex i and j are connected by
an edge in graph G. Graph can be directed or undirected.
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Replication. Figure 2.2 in Borgatti et al. (2022).

Remark. Path never revisits a node, e.g., S4 −W9 −W8 −W7 is a sequence of path. Trail
never revisits an edge, e.g., W1 − S1 − W3 − W4 − S1 − W7 is a sequence of trail.
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Definition 2.2 (Degree). The number of connections a node has is denoted as degree.
Nodes with degree 0 are "isolates," and nodes with degree 1 are "pendants."

Definition 2.3 (Components). A component is defined as a maximal set of nodes in which
every node can reach every other by some path. The "maximal" term means that we must
include the specific node if adding it to the set would not violate the condition that every
node can reach everyone.

Holly

Don

Harry
Bill

Michael

Pam

Pat

Pauline

Carol

Ann

Jennie

John

Gery
Russ

Steve Bert

Lee Brazey

Replication. Figure 2.3 in Borgatti et al. (2022).

Remark. Color signals components. We notice the set {Gery, Russ, Steve, Burt, Lee, Brazey}
represents one component. Why? We cannot not include more nodes to this set while sat-
isfying the condition that each node connects to everyone. It is thus a ‘maximal‘ set.

Definition 2.4 (Adjacency matrix). The adjacency matrix X of a non-valued graph is de-
fined as a matrix in which the entry xij = 1 if existing a tie from i to j and xij = 0 if not
(direction matters).

Definition 2.5 (Compound relations). The inner product of two adjacency matrices con-
structs compound social relations.

Example 2.1. Suppose matrix F represents "friend of" relations and matrix E represents
"enemy of" relations, then the inner product FE is a compound relation meaning "enemy
of a friend of," where FE(i, j) indicates the number of i’s friends who have j as an enemy.
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Definition 2.6 (Application of Matrix Transpose: Undirected Graph). Suppose we have a
network matrix A, then the diagonal of inner product A · AT yields the count of ties for
each node, where entry (i, j) yields the count of node both node i and j connect to.

Remark. For Directed Graph: A · AT yields out-degree ties, and AT · A yields in-degree.

Example 2.2. Consider the following network:

1

2

3

4

We specify the adjacency matrix A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

, then we get A · AT =


3 1 2 1
1 2 1 2
2 1 3 1
1 2 1 2

,

where {3, 2, 3, 2} counts ties and 2 signals that Node 1 & 3 have two common connections
(i.e, to Node 2 & 4).

3 Research Design

Overview. Researchers care about the reliability of sources of data and their validity is-
sues. Essentially, four kinds of errors are tested: 1 omission of nodes, 2 omission of ties,
3 inclusion of false nodes, and 4 inclusion of false ties. Researchers have found that

errors in various centrality measures resulting from random exclusion and inclusion of
edges in random graph vary as a function of characteristics of the network.

Summary. Several key errors in SNA research:
• Omission & commission errors. Missing/Adding nodes or edges can obviously

over/underestimates the centrality measures. Particularly common for open-ended
survey. For instance, falsely adding a tie between a3 and a8 (the dashed line) can
cause the two nodes to be exaggeratedly important than they were.
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Replication. Figure 3.2 in Borgatti et al. (2022).
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• Attribution errors for edge/node. False attributions can yield non-exist networks
(e.g., treating co-attendance as a tie).

Check Borgatti et al. (2022) pp.43-45 for more data/model specification errors.

4 Data Collection (skip)

5 Data Management in R (skip)

6 Multivariate Techniques in Network Analysis

6.1 Multidimensional Scaling (MDS)

6.2 Correspondence Analysis (CA)

6.3 Hierarchical Clustering
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7 Visualization in R

Overview. We require 1 sna or 2 igraph packages for network visualization.

1 library(sna)

2 library(igraph)

3

4 # Read in the data

5 # First create an empty list object to store ``Krackhardt_HighTech`` networks:

6 Krackhardt_HighTech = list()

7

8 # Now we read in the data and add different elements to it:

9 Krackhardt_HighTech$Advice = as.matrix(

10 read.csv("Krackhardt_HighTech_Advice.csv",

11 stringsAsFactors=FALSE, row.names=1)

12 ) # Same process for ``Advice``, ``Friendship``, ``Attribute`` (already matrix)

From Definition 2.6, we use the fact that A · AT tells us info about the network (# of ties,
common connections, etc). We can borrow the t function for such matrix transpose.

1 # Symmetrizing the network matrix: ``Krackhardt_HighTech``
2 # t: Matrix Transpose

3 Krackhardt_HighTech$Friendship_SymMin =

4 (Krackhardt_HighTech$Friendship)*t(Krackhardt_HighTech$Friendship)

The following two chunks plot the network with two different packages.

1 # Figure 7.1: using the "sna" package

2 gplot(Krackhardt_HighTech$Friendship_SymMin,

3 gmode = "graph", # type of network: undirected #digraph: directed

4 mode = "circle", # how the nodes are positioned

5 vertex.cex = 0.8, # the size of the node shapes

6 displaylabels = TRUE, # to add the node labels

7 label.pos = 1, # to position the labels below the node shapes

8 label.cex = 0.8, # to decrease the size of the node labels

9 edge.color = "grey70")
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1 # Figure 7.2: using the "igraph" package

2 KHF_SymMin_i = graph_from_adjacency_matrix(Krackhardt_HighTech$Friendship_SymMin,

3 mode = "undirected", diag = FALSE)

4 plot(KHF_SymMin_i,

5 #layout = layout_in_circle,

6 vertex.size = 8, # the size of the node shapes

7 vertex.label.cex = 0.8, # to decrease the size of the node labels

8 #vertex.label.family = "", # change the font (default Times New Roman)

9 vertex.label.color = "black", # change the label colors (default blue)

10 vertex.label.dist = 1.1, # change the dist of the labels (default 0)

11 vertex.label.degree = pi/2, # to pos the labels below the node shapes

12 edge.color = "grey70",

13 edge.width = 2) # increase the width of the ties.

Note. The left plot (7.1) uses sna, the right one (7.2) uses igraph.

Remark. Always do the graph_from_adjacency_matrix() to transform data into “graph“
for igraph package. During the LINKS Workshop, one attendee mentioned that library(threejs)
generates powerful visualization for networks (data in igraph). Here is an example with
sample codes.
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8 Local Node-level Measures

8.1 Tie composition
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9 Centrality

Overview. Key highlights of centrality measures:
• Group-level: "How centralized is the group?" density, centralization, homophily, com-

ponents

• Individual-level: "How central is a node in the group?" degree centrality, closeness
centrality, betweenness centrality, structural holes, diversity of alters

• Dyad-level: "What is the shortest distance between two nodes (A and B)?" direct tie
between two units, level of structural equivalence, geodesic distance, Number of
shared clique membership

9.1 Degree Centrality

Motivation. Who has the most direct connections?

Definition 9.1 (Degree Centrality). Degree Centrality is defined as the number of ties of a
given type that a node has. For adjacency matrix X, the degree centrality is the row/col-
umn sum, i.e., di = ∑

j
xij.

Remark. Nodes with higher degree centrality tend to be more important in a network.
Degree centrality can be an index of exposure of this node and is particularly important
for some "directly influenced network.". In R, we can use xDegreeCentrality() for simple
calculation.

Definition 9.2 (Eigencentrality). Eigencentrality counts the number of nodes adjacent to a
given node but weights each node by its centrality.

ei =
1
λ ∑

j
xijej

where e is the eigencentrality score and λ is an eigenvalue (constant).

Remark. Eigencentrality says that each node’s (eigen)centrality (ei) is proportional to the
sum of (eigen)centralities (ej) of the nodes it is adjacent to (those xij = 1). By convention,
we use the largest eigenvalue for eigencentrality and normalized it s.t. sum of squares
= 1. We can use the function xEigenvectorCentrality().

Motivation. What if there can be a repeated influence among nodes?

Definition 9.3 (Bonacich Beta Centrality). Bonacich Beta Centrality is given by the equation

(I − βX)−1X =
∞

∑
k=1

(βk−1Xk) = X + βX2 + β2X3 + · · ·
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Example 9.1 (Sample R Codes: Bonacich Beta Centrality). Note that we normalize the
Beta Centrality by ensuring the sum of centrality is 1.

1 # igraph

2 GRAPH11 = graph_from_adjacency_matrix(MAT11, mode = c("undirected"), diag = F)

3

4 # Sample output

5 bonpow(GRAPH11, exponent = 0.1)/sum(bonpow(GRAPH11, exponent = 0.1))}.

6 [1] 0.05570 0.055707 0.055707 0.182418 0.055707

7 [6] 0.055707 0.055707 0.182418 0.158428 0.095475 0.047013

8

9 bonpow(GRAPH11, exponent = 0.5)/sum(bonpow(GRAPH11, exponent = 0.5))

10 [1] 0.06779 0.067796 0.067796 0.152542 0.067796

11 [6] 0.067796 0.067796 0.152542 0.169491 0.084745 0.033898

12

13 max(eigen(MAT11)) # Generally, we can use this eigenvalue as beta

Remark. What β should we use here? When β = 0, this Bonacich Beta Centrality con-
verges back to Degree Centrality. Generally, larger the better & we can use max(eigen())

for such β (somewhat back to eigencentrality).

9.2 Closeness Centrality

Motivation. Who is most central- If you have information that you want everyone in the
group to have, and you can only give it to one person, who would you give it to?

Definition 9.4 (Freeman’s Closeness Centrality). Closeness Centrality is normalized by
Ci = N−1

∑
j

geodesic(i,j) , where N − 1 is the theoretical minimum farness of the network of N

nodes.

Example 9.2 (Sample R Codes: Freeman’s). Below are some Freeman’s Closeness Cen-
tralities using sna and igraph.

1 sna::closeness(dat, g = 1, nodes = NULL, gmode = "digraph",

2 diag = FALSE, tmaxdev = FALSE, cmode = "directed",

3 geodist.precomp = NULL, rescale = FALSE,

4 ignore.eval = TRUE) # default

5 # Sample output

6 sna::closeness(Simpsons_n, gmode="graph")

7 [1] 0.5294118 0.5294118 0.6000000 0.5000000 0.5000000

8 [6] 0.6428571 0.6428571 0.6000000 0.4285714 0.3103448
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1 igraph::closeness(graph, vids = V(graph),

2 mode = c("out", "in", "all", "total"),

3 weights = NULL, normalized = FALSE) # default

4 # Sample output

5 igraph::closeness(Simpsons_i, normalized = T)

6 Ned Marge Homer Abe Maggie

7 0.5294118 0.5294118 0.6000000 0.5000000 0.5000000

8 Bart Lisa Krusty Bob Cecil

9 0.6428571 0.6428571 0.6000000 0.4285714 0.3103448

Remark. For the igraph::closeness() function, we need to specify normalized = T. How-
ever, when there exists multiple components (for undirected, non-valued graph), this
Freeman Closeness Centrality no longer works (Why? every total geodesic steps = ∞).

Marge Maggie

Ned Homer Lisa

Abe Bart

Krusty Bob Cecil

Replication. Figure in LINKS Workshop 2023.

Remark. With tie Bob-to-Cecil, the central nodes are Lisa and Bart. However, without
such tie, the new central node becomes Homer.

Motivation. When there exists multiple components, if you have information that you
want as many people as possible in the group to have, and you can only give it to one person
in the group, who would you give it to?

Definition 9.5 (Reciprocal Closeness Centrality). Sum of 1
total geodesic steps of a given node

and divided by the theoretical minimum farness.
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Example 9.3 (Sample R codes: Reciprocal). Below are some Reciprocal Closeness Central-
ities using sna. We first set Bob and Cecil unlinked, i.e., more than 1 components.

1 Simpsons_n2 = Simpsons_n

2 Simpsons_n2[9,10] = 0

3

4 #Sample output

5 sna::closeness(Simpsons_n2, gmode = "graph", cmode = "suminvundir")

6 [1] 0.6481481 0.6481481 0.7592593 0.5925926 0.5925926

7 [6] 0.7222222 0.7222222 0.6111111 0.4074074 0.0000000

Adversely, we can let Krusty and Bob unlinked (still more than 1 components).

1 Simpsons_n3 = Simpsons_n

2 Simpsons_n3[8,9] = 0

3

4 #Sample output

5 sna::closeness(Simpsons_n3, gmode="graph", cmode="suminvundir")

6 [1] 0.6111111 0.6111111 0.7222222 0.5555556 0.5555556

7 [6] 0.6666667 0.6666667 0.5000000 0.1111111 0.1111111

9.3 Betweenness Centrality

Motivation. Who is important as “in-between” person to transfer information?

Definition 9.6 (Betweenness Centrality). (skip)

Example 9.4 (Sample R Code: Betweenness). Below are some Betweenness Centrality
using sna and igraph.

1 sna::betweenness(Simpsons_n, gmode = "graph")

2 [1] 0.8333333 0.8333333 3.6666667 0.0000000 0.0000000

3 [6] 8.3333333 8.3333333 14.0000000 8.0000000 0.0000000

4

5 igraph::betweenness(Simpsons_i)

6 Ned Marge Homer Abe Maggie

7 0.8333333 0.8333333 3.6666667 0.0000000 0.0000000

8 Bart Lisa Krusty Bob Cecil

9 8.3333333 8.3333333 14.0000000 8.0000000 0.0000000

10 igraph::betweenness(Simpsons_i, normalized=T)

11 Ned Marge Homer Abe Maggie

12 0.02314815 0.02314815 0.10185185 0.00000000 0.00000000

13 Bart Lisa Krusty Bob Cecil

14 0.23148148 0.23148148 0.38888889 0.22222222 0.00000000
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10 Group-level Measures

Overview. Key focuses: density, centralization, reciprocity, transitivity, components.

Definition 10.1 (Density). Density is defined as the proportion of pairs of nodes are di-
rectly connected in a network.

Example 10.1. For Undirected network with 8 nodes and 7 ties, the density is measured
by Number of ties

Number of possible ties = 7
C8

2
= 0.25.

Definition 10.2 (Centralization). aaa

(Last edited: 06/06/2023, Borgatti et al. (2022) & LINKS Workshop 2023)
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