Auction Theory Reading Notes

Eric Hsienchen Chu*

Spring, 2024

(*) Suggested readings: Prof. Marzena Rostek primarily uses Mas-Colell et al. (1995), Gibbons (2005), and Jehle and Reny (2010). As a side material, this reading notes is based on Krishna (2010), Chapter 1–4, from (TA) Rodrigo Yanez Naudon's suggestion and his Discussion handouts.

Contents

1	Intr	oduction	2
2	Private Value Auctions		2
	2.1	The Symmetric Model	2
	2.2	Second-price Auction (SPA)	3
	2.3	First-price Auction (FPA)	4
	2.4	Revenue Comparison	6
	2.5	Reserve Prices	7
3	The	Revenue Equivalence Principle	9
	3.1	Main Results	9
	3.2	Applications of RET	11

^{*}Department of Economics, University of Wisconsin-Madison. hchu38@wisc.edu. This is reading notes for the second half of ECON713: Microeconomic Theory II. Instructor: Prof. Marzena Rostek. TA: Rodrigo Yanez Naudon.

1 Introduction

Overview. Here is a big picture of some common auction forms:

- Open-bid Auction
 - Descending/Dutch Auction: Price starts high. The winning bids pays at the price when the first bidder bids.
 - Ascending/English Auction: Price starts low. The winning bids pays the value when second-last bidder drops out.
- Sealed-bid Auction
 - First-price Auction (FPA): highest bid wins and pays the exact amount. (\bigstar)
 - Second-price Auction (SPA): highest bid wins but pays the second-highest bid.
 - All-pay Auction (APA): highest bid wins, but everyone pays for own bid.

Spoiler Alert 1.1. Descending/Dutch Auction is strategically equivalent to First-price Auction (FPA). And, Ascending/English Auction is *weakly* (strategically) equivalent to Second-price Auction (SPA) if with Independent Private Value (IPV).

2 Private Value Auctions

2.1 The Symmetric Model

Model 2.1 (Symmetric Model). We make standard assumptions:

- Goods: single object
- Players: $\mathcal{I} = \{1, \cdots, I\}$ potential *risk neutral* bidders
- Valuation: bidder *i* assigns value of v_i to the object, where $v_i \in [0, V]$ and $v_i \stackrel{iid}{\sim} F$ for increasing CDF *F*.
- Common knowledge: the distribution F (of v) is common knowledge

Remark. Why do we care about symmetric equilibrium (BNEs)? It's an equilibrium in which all bidders follow the same bidding strategy $\mathbf{b}(\mathbf{v})$.

Remark. The "risk neutral" assumption will be useful when discussing Revenue Equivalence Theorem (**RET**).

2.2 Second-price Auction (SPA)

Recall that SPA is equivalent to Ascending/English Auctions with IPV.

Model 2.2 (SPA). The payoffs of bidder *i* who bids $b_i(v_i)$ in SPA is:

$$u_i(v_i, b_i, b_{-i}) = \begin{cases} v_i - \max_{j \neq i} b_j, & \text{if } b_i > \max_{j \neq i} b_j =: b_{(2)} \\ 0, & \text{if } b_i < \max_{j \neq i} b_j =: b_{(2)} \end{cases}$$
(2.1)

Then, bidder *i* maximizes EU: $\max_{b_i} \mathbb{E}[u_i(v_i, b_i, b_{-i})|v_i, b_i] = (v_i - b_{(2)})\mathbb{P}(b_i > b_j, \forall j \neq i)$

Proposition 2.1. In SPA (w/IPV), the weakly dominant strategy is to bid $\mathbf{b}^{\text{SPA}}(\mathbf{v}) = \mathbf{v}$. *Proof.* WLOG, let $b_i(v_i) = v_i$ be the winning bid. Suppose *i* bids v'_i s.t. $v'_i < v_i$ (underbid). **IF** $v_i > v'_i \ge b_{(2)}$, then *i* wins with payoff equals to $v_i - b_{(2)}$. **IF** $b_{(2)} > v_i > v'_i$, then *i* loses the auction with payoff 0. But, **IF** $v_i > b_{(2)} > v'_i$, then *i* loses the auction whereas bidding v_i yields positive payoffs. Thus, bidding anything less than v_i is weakly dominated by bidding exactly v_i . By symmetry, bidding anything higher than v_i is weakly dominated by bidding exactly v_i . Therefore, the unique symmetric BNE here is to bid own valuation v_i .

Example 2.1 (Expected Payment in SPA). Bidder *i* bids $\mathbf{b}^{SPA}(v_i) = v_i$ but pays only the second price. Define $G(v) := F(v)^{I-1}$, then expected payment by a bidder with value v_i is:

=

$$\mathbb{E}[\operatorname{Payment}_{i}^{SPA}|v=v_{i}] = \mathbb{P}(b_{i} > b_{j}, \forall j \neq i) \times \mathbb{E}[b_{(2)}|b_{(1)}=v_{i}]$$
(2.2)

$$= \overline{G}(v_i) \int_0^{v_i} y \frac{\overline{G}'(y)}{\overline{G}(v_i)} dy = \int_0^{v_i} y \overline{G}'(y) dy \ (\bigstar)$$
(2.3)

Exercise 2.1 (Spring24 PS1 Q4(a) (\bigstar)). Consider an auction of a single object with *I* risk-neutral bidders with IPV for the object $v_i \stackrel{iid}{\sim} U[0, V]$.

(a) What would be the expected payment of a bidder if the auction format was a **Second-price (sealed-bid) Auction**.

Solution (a). Consider $G'(v_i) = (I-1)F(v_i)^{I-2} = (I-1)(\frac{v_i}{V})^{I-2}$ and use Equation (2.3):

$$\mathbb{E}[\operatorname{Payment}_{i}^{SPA}|v=v_{i}] = \widetilde{G}(v_{i}) \int_{0}^{v_{i}} y \frac{G'(y)}{G(v_{i})} dy = \int_{0}^{v_{i}} y G'(y) dy$$
(2.4)

$$= \int_{0}^{v_{i}} y(I-1) \frac{y^{I-2}}{V^{I-1}} dy = \left(\frac{I-1}{I}\right) \left(\frac{v_{i}^{I}}{V^{I-1}}\right)$$
(2.5)

(Alternatively, we can solve this by $\mathbf{b}^{SPA}(v_i) = \mathbf{b}^{FPA}(v_i)G(v_i) = \mathbb{E}[b_{(2)}|b_{(1)} = v_i]G(v_i)$.)

First-price Auction (FPA) $\mathbf{2.3}$

Model 2.3 (FPA). The payoffs of bidder *i* who bids $b_i(v_i)$ in FPA is:

$$u_i(v_i, b_i, b_{-i}) = \begin{cases} v_i - b_i, & \text{if } b_i > b_{-i} \\ \frac{1}{2}(v_i - b_i), & \text{if } b_i = b_{-i} \\ 0, & \text{if } b_i < b_{-i} \end{cases}$$
(2.6)

Assuming atomless distribution $v \stackrel{iid}{\sim} F[0,1]$ Then, bidder *i* maximizes EU:

$$\max_{b_i} \mathbb{E}[u_i(v_i, b_i, b_{-i}) | v_i, b_i] = (v_i - b_i) \mathbb{P}(b_i > b_j, \ \forall j \neq i)$$
(2.7)

$$= (v_i - b_i)F(v_i)^{I-1}$$
(2.8)

$$= (v_i - b_i) F(b^{-1}(b(v_i)))^{I-1}$$
(2.9)

$$= (v_i - b_i)G(b^{-1}(b(v_i)))$$
(2.10)
$$= \frac{1}{b'(v_i)}$$

$$\longrightarrow FOC \ [b_i]: \ 0 = -G(v_i) + (v_i - b_i)G'(v_i) \overbrace{[b^{-1}(b(v_i))]'}^{(i)} (2.11)$$

$$0 = -G(v_i) \delta(v_i) + (v_i - \delta_i) G(v_i)$$
(2.12)

$$G(v_i)b'(v_i) + b(v_i)G'(v_i) = v_iG'(v_i)$$

$$\int_{v_i}^{v_i} \partial[G(y)b(y)] = \int_{v_i}^{v_i} G'(v_i)$$
(2.13)

$$\int_0^{b_i} \frac{\partial [G(y)b(y)]}{\partial y} dy = \int_0^{b_i} y G'(y) dy$$
(2.14)

$$\implies \mathbf{b}^{FPA}(v_i) = \frac{1}{G(v_i)} \int_0^{v_i} y G'(y) dy (\bigstar)$$
(2.15)

$$= \frac{1}{G(v_i)} \left[\left[yG(y) \right]_0^{v_i} - \int_0^{v_i} G(y) dy \right]$$
(2.16)

$$= v_i - \int_0^{v_i} \frac{G(y)}{G(v_i)} dy (\bigstar)$$
(2.17)

Remark (Intuition). From Equation (2.15), we learn that $\mathbf{b}^{FPA}(v_i) = \frac{1}{G(v_i)} \int_0^{v_i} y G'(y) dy$. Specifically, as hinted in SPA, the symmetric BNE in FPA is to **underbid**:

$$\mathbf{b}^{FPA}(v_i) = \frac{1}{G(v_i)} \int_0^{v_i} y G'(y) dy = \mathbb{E}[b_{(2)}|b_{(1)} = v_i]$$
(2.18)

$$= \mathbb{E}[\max_{j \neq i} v_j | v_i > v_j, \ \forall j \neq i], \qquad (2.19)$$

where $b_{(2)} := \max_{j \neq i} v_j$ is the highest of I - 1 values (i.e., first-order statistics). Essentially, no bidder would bid own valuation since payoff is 0. The bidder thus faces a simple trade-off: an increase in the bid increases the probability of winning but reduces the payoffs.

Remark. In BNE, the bidder with the highest valuation wins the auction since $\mathbf{b}(\mathbf{v})$ is strictly increasing and continuous function (monotonic).

Remark (Bid Shading). The bid is naturally less than v_i since $\frac{G(y)}{G(v_i)} = \left[\frac{F(y)}{F(v_i)}\right]^{I-1}$, the degree of "shading" (the amount by which the bid $\mathbf{b}(v_i)$ is less than v_i) depends on I. For a fixed distribution F, the bid shading approaches to 0 as I increases.

Example 2.2 (FPA with Uniform). Suppose there are *I* risk neutral bidders with value $v \stackrel{iid}{\sim} U[0,1]$. Define $G(v) := F(v)^{I-1} = v^{I-1}$ (by Uniform), then by Equation (2.15)

$$\mathbf{b}^{FPA}(v_i) = \frac{1}{G(v_i)} \int_0^{v_i} y G'(y) dy$$
(2.20)

$$= \frac{1}{v_i^{I-1}} \int_0^{v_i} y(I-1) y^{I-2} dy$$
 (2.21)

$$= \frac{1}{v_i^{I-1}} \left(\frac{I-1}{I} v_i^I \right) = \frac{I-1}{I} v_i \tag{2.22}$$

Example 2.3 (FPA with Exoponential). Suppose there are 2 risk neutral bidders with value $v \stackrel{iid}{\sim} Exp(\lambda)$ on $[0,\infty)$ ($\lambda > 0$). Define $G(v) := F(v)^{2-1} = F(v) = 1 - e^{-\lambda v}$ (by *Exponential*), then by Equation (2.17)

$$\mathbf{b}^{FPA}(v_i) = v_i - \int_0^{v_i} \frac{G(y)}{G(v_i)} dy$$
(2.23)

$$= v_i - \frac{1}{(1 - e^{-\lambda v_i})} \int_0^{v_i} 1 - e^{-\lambda y} dy$$
 (2.24)

$$= v_i - \frac{1}{(1 - e^{-\lambda v_i})} \left(v_i + \frac{1}{\lambda} e^{-\lambda v_i} - \frac{1}{\lambda} \right)$$
(2.25)

$$= \frac{1}{\lambda} - \frac{v_i e^{-\lambda v_i}}{1 - e^{-\lambda v_i}} \tag{2.26}$$

In a special case where $\lambda = 2$, we notice $\mathbf{b}^{FPA}(v_i) < \frac{1}{2}$, i.e., bidders with high values are still only willing to bid a very small amount.

2.4 Revenue Comparison

Motivation. We have derived the (symmetric) optimal bidding strategy in FPA & SPA. We now want to compare the expected revenues from the two auction formats.

Fact 2.1 (Payment/Revenue Equivalence: FPA & SPA). We notice that the *expected* payment by a bidder with valuation v_i is:

$$\mathbb{E}[\operatorname{Payment}_{i}^{FPA}|v=v_{i}] = \underbrace{\mathbf{b}^{FPA}(v_{i})}_{\text{amount prid}} \times \underbrace{\mathbb{P}(b_{i} > b_{j}, \forall j \neq i)}_{\text{prob. of principal}}$$
(2.27)

$$= \mathbb{E}[b_{(2)}|b_{(1)} = v_i] \times G(v_i)$$
(2.28)

$$= \overline{G}(v_i) \int_0^{v_i} y \frac{G'(y)}{\overline{G}(v_i)} dy$$
(2.29)

$$= \int_0^{v_i} y G'(y) dy = \mathbb{E}[\operatorname{Payment}_i^{SPA} | v = v_i] (\bigstar) (2.30)$$

Further suppose $v \stackrel{iid}{\sim} F[0,1]$ with density f. Since ① the expected payment by bidder with v_i is the same between FPA & SPA and that ② expected revenue is the sum of the "ex ante expected payment", we observe the **revenue equivalence**:

$$ER^{FPA} = I \times \underbrace{\mathbb{E}[\operatorname{Payment}_{i}^{FPA}]}_{\text{ex ante Exp. Payment}}$$
(2.31)

$$= I \times \int_{0}^{1} \mathbb{E}[\operatorname{Payment}_{i}^{FPA} | v = v_{i}] \cdot \underbrace{f(v)}_{\operatorname{density}} dv$$
(2.32)

$$= I \times \int_0^1 \mathbb{E}[\operatorname{Payment}_i^{SPA} | v = v_i] \cdot f(v) dv \leftarrow \text{by Equation (2.30)} \quad (2.33)$$

$$= I \times \mathbb{E}[\operatorname{Payment}_{i}^{SPA}]$$
(2.34)

$$= ER^{SPA} \tag{2.35}$$

Proposition 2.2. With *iid* private values, the *Expected Revenue* in a FPA is the same as the *Expected Revenue* in a SPA.

Remark. While the revenue may be greater in one auction or another depending on the realized values, we have argued that *on average* the revenue will be the same in FPA & SPA.

Remark. We can actually extend such revenue equivalences to more general auctions, which we will introduce the Revenue Equivalence Theorem (**RET**) in Section (3.1).

2.5 Reserve Prices

Motivation. In many instances, sellers reserve the right to *not* sell the object if the price determined in the auction is lower than *reserve price* r > 0.

Model 2.4 (Reserve Price in SPA). With a reserve price r > 0, only bidders with value $v_i \ge r$ will bid in the auction. No change to the weakly dominant strategy by bidding own valuation $\mathbf{b}^{SPA}(v_i) = v_i$. At the cutoff, bidder of value r will bid r. The expected payment by a bidder of value $v_i \ge r$ is given by:

$$m^{SPA}(v_i; v_i \ge r) = \underbrace{rG(r)}_{\text{baseline}} + \underbrace{\int_r^{v_i} yG'(y)dy}_{\text{for } v_i \ge r} (\bigstar)$$
(2.36)

Remark (Intuition). The winner pays the reserve price r whenever the second-highest bid is below r, governed by rG(r). The second part is from Equation (2.30) and modify the lower bound of integral.

Model 2.5 (Reserve Price in FPA). Similarly, with a reserve price r > 0, only bidders with value $v_i \ge r$ will bid in the auction. At the cutoff, bidder of value r will bid r. Modifying Equation (2.14), we solve:

$$\int_{r}^{v_{i}} \frac{\partial [G(y)b(y)]}{\partial y} dy = \int_{r}^{v_{i}} y G'(y) dy \qquad (2.37)$$

$$\implies G(v_i)b(v_i) - G(r)b(r) = \int_r^{v_i} y G'(y) dy$$
(2.38)

$$\implies \mathbf{b}^{FPA}(v_i) = \frac{1}{G(v_i)} \left[b(r)G(r) + \int_r^{v_i} yG'(y)dy \right] \qquad (2.39)$$

$$= \frac{1}{G(v_i)} \left[rG(r) + \int_r^{v_i} yG'(y) dy \right]$$
(2.40)

Then, the expected payment by a bidder of value $v_i \ge r$ is given by:

$$m^{FPA}(v_i) = \mathbf{b}^{FPA}(v_i) \cdot \mathbb{P}(b_i > b_j, \ \forall j \neq i)$$
(2.41)

$$= \mathbf{b}^{FPA}(v_i) \cdot G(v_i) \tag{2.42}$$

$$= \underbrace{rG(r)}_{\text{baseline}} + \underbrace{\int_{r}^{v_{i}} yG'(y)dy}_{\text{for }v_{i} \ge r} (\bigstar)$$
(2.43)

Remark. By Revenue Equivalence, Equation (2.36) equals Equation (2.43). Thus, with reserve price r > 0, the expected payments and expected revenue will all again be the **same**.

Exercise 2.2 (Spring24 TA Handout 8 Q4 Modified $(\bigstar \bigstar)$). Suppose there are I bidders in a FPA. The valuation of the bidders v is private information drawn from $v \stackrel{iid}{\sim} F[0,1]$. Further suppose that the seller set a **reserve price** r > 0. What is the **revenue** of the auctioneer?

Solution. From Model (2.5), we obtain the expected payment by bidder of value v_i :

$$m^{FPA}(v_i; r) := \mathbb{E}[\operatorname{Payment}_i^{FPA} | v = v_i, r] = rG(r) + \int_r^{v_i} yG'(y)dy$$
(2.44)

The ex ante expected payment conditional on r is then given by:

$$\mathbb{E}[\operatorname{Payment}_{i}^{FPA}] = \int_{r}^{1} m^{FPA}(v_{i}; r) \cdot f(v) dv \qquad (2.45)$$

$$= \int_{r}^{1} \left(rG(r) + \int_{r}^{v_{i}} yG'(y)dy \right) f(v)dv$$
 (2.46)

$$= rG(r) \left[F(v)\right]_{r}^{1} + \int_{r}^{1} \underbrace{\left[\int_{r}^{v_{i}} yG'(y)dy\right]}_{\det = h(v,r) (\bigstar)} f(v)d(v)$$
(2.47)

$$= rG(r)\left(1 - F(r)\right) + \int_{r}^{1} h(v, r)f(v)dv$$
(2.48)

$$= rG(r)\left(1 - F(r)\right) + \left[h(v,r)F(v)\right]_{r}^{1} - \int_{r}^{1} F(v)\frac{d}{dv}\left[yG'(y)\right]_{r}^{v}du(2.49)$$

$$= rG(r)\left(1 - F(r)\right) + \left[h(v,r)F(v)\right]_{r}^{1} - \int_{r}^{1} F(v)vG'(v)dv \qquad (2.50)$$

$$= rG(r) \left(1 - F(r)\right) + h(1, r) \cdot 1 - \underbrace{h(r, r)}_{= 0} F(r) - \int_{r}^{1} F(v) v G'(v) dt_{51}$$

$$= rG(r)\left(1 - F(r)\right) + \int_{r}^{1} vG'(v)dv \cdot 1 - \int_{r}^{1} F(v)vG'(v)dv \qquad (2.52)$$

$$= rG(r)\left(1 - F(r)\right) + \int_{r}^{1} \left(1 - F(v)\right) vG'(v)dv$$
(2.53)

Consider that the seller attaches a value $v_0 \in [0, 1)$ if the object remains unsold. We notice that the seller will only set a reserve price r s.t. $r \ge v_0$.

Therefore, the overall Expected Revenue with reserve price $r \ge v_0$ is:

$$\Pi = I \times \mathbb{E}[\operatorname{Payment}_{i}^{FPA}] + F(r)^{I} v_{0}$$
(2.54)

In addition, we can solve optimal reserve price r^* and find that $r^* > v_0$:

FOC
$$[r]: 0 = I[1 - F(r) - rf(r)]G(r) + I \cdot G(r)f(r)v_0 (skip)$$
 (2.55)

3 The Revenue Equivalence Principle

3.1 Main Results

Theorem 3.1 (Revenue Equivalence Theorem). Consider $I \ge 2$ bidders. Suppose BNEs of any two auctions are such that:

- ① Bidders are *risk neutral*,
- $(2) \{v_i\}_{i\in\mathcal{I}} \stackrel{iid}{\sim} F,$
- ③ \forall valuation profile (v_1, \dots, v_I) , the highest value bidder "*i*" has the same probability of winning the auction, and
- (4) the lowest value bidder has the same ex post payoff

Then, the Expected Revenue of the two auctions are the same.

Remark. The RET breaks when (i) risk-averse bidders, (ii) interdependent values, (iii) budget constraints, and (iv) collusion.

Exercise 3.1 (Spring24 PS1 Q4(b) (\bigstar)). Consider an auction of a single object with I risk-neutral bidders with IPV for the object $v_i \stackrel{iid}{\sim} U[0, V]$. The auctioneer sells the object through an *all pay auction*, defined as a simultaneous sealed-bid auction in which the higher bidder wins the object, but every bidder pays her submitted bid.

(b) Applying the **Revenue Equivalence Theorem**, solve for the bidding functions in a symmetric equilibrium in the *all-pay auction*.

Solution (b). Consider APA:

$$u_{i}(v_{i}, b_{i}, b_{-i}) = \begin{cases} v_{i} - b_{i}, & \text{if } b_{i} > \max_{j \neq i} b_{j} =: b_{(2)} \\ -b_{i}, & \text{if } b_{i} < \max_{j \neq i} b_{j} =: b_{(2)} \end{cases}$$
(3.1)

$$\implies \max_{b_i} v_i G(b^{-1}(b(v_i))) - b_i \tag{3.2}$$

To invoke Theorem (3.1) (**RET**) between SPA and APA, we check the four conditions:

- (1) Bidders are risk neutral (\checkmark),
- $(2) \{v_i\}_{i \in \mathcal{I}} \stackrel{iid}{\sim} U[0,1]: \text{ iid } (\checkmark),$
- ③ the highest value bidder has the same winning prob = $F(v_i)^{I-1} = \left(\frac{v_i}{V}\right)^{I-1}$ (\checkmark), and
- (4) the lowest value bidder has the same *ex post* payoff of 0 (SPA: 0; APA: $v_i b_i = 0 0 = 0$) (\checkmark)

 \implies We can apply **RET** and use Exercise (2.1) to find that:

$$\mathbf{b}^{APA}(v_i) = \underbrace{\mathbb{E}[\operatorname{Payment}_i^{APA} | v = v_i]}_{\operatorname{Revenue Equivalence Theorem}} \underbrace{\mathbb{E}[\operatorname{Payment}_i^{SPA} | v = v_i]}_{\operatorname{Revenue Equivalence Theorem}} = \left(\frac{I-1}{I}\right) \left(\frac{v_i^I}{V^{I-1}}\right) (3.3)$$

Fact 3.1 (Shortcut for Expected Revenue). Let $m^{\mathcal{A}}(v_i) := \mathbb{E}[\operatorname{Payment}_i^{\mathcal{A}}|v=v_i]$ be the equilibrium expected payment in any auction \mathcal{A} by a bidder with value v_i . Suppose $\mathbf{b}^{\mathcal{A}}(\mathbf{v})$ is such that $m^{\mathcal{A}}(0) = 0$, then:

$$m^{\mathcal{A}}(v_i) = \mathbb{E}[b_{(2)}|b_{(1)} = v_i] \cdot G(v_i)$$
 (3.4)

$$= \int_0^{v_i} y \frac{G'(y)}{G(v_i)} dy \cdot G(v_i) = \int_0^{v_i} y G'(y) dy (\bigstar)$$
(3.5)

Remark. This result comes from $m^{\mathcal{A}}(v_i) = m^{\mathcal{A}}(0) + \int_0^{v_i} y G'(y) dy = \int_0^{v_i} y G'(y) dy$.

Example 3.1 (FPA & SPA). In FPA & SPA (see Equation (2.30)), we note that:

$$m^{FPA}(v_i) = \underbrace{\mathbf{b}^{FPA}(v_i)}_{\text{amount paid}} \times \underbrace{\mathbb{P}(b_i > b_j, \ \forall j \neq i)}_{\text{prob. of paying}} = \int_0^{v_i} y G'(y) dy \tag{3.6}$$

$$m^{SPA}(v_i) = \underbrace{\mathbb{E}[b_{(2)}|b_{(1)} = v_i]}_{\text{amount paid}} \times \underbrace{\mathbb{P}(b_i > b_j, \forall j \neq i)}_{\text{prob. of paying}} = \int_0^{v_i} y G'(y) dy \qquad (3.7)$$

Note: In either case, *Expected Revenue* is just the expectation of the second-highest value.

Example 3.2 (APA; special case). Consider APA (see Exercise (3.1)) but now with $v \stackrel{iid}{\sim} U[0,1]$. Let's define $G(v) := F(v)^{I-1} = v^{I-1} \implies G'(v) = (I-1)v^{I-2}$. By Equation (3.5), we note that the expected payment by a bidder with value of v_i is:

$$m^{APA}(v_i) = \int_0^{v_i} y G'(y) dy = \int_0^{v_i} y (I-1) y^{I-2} dy = \frac{I-1}{I} v_i^I$$
(3.8)

Note: Bidder *i* bids $\mathbf{b}^{APA}(v_i) = \frac{I-1}{I}v_i^I = m^{APA}(v_i)$, which coincides with her expected payment. To see $\mathbf{b}^{APA}(v_i)$ we solve Equation (3.2).

Summary. The Expected Payment by bidder of value v_i $(m^{\mathcal{A}}(v_i))$ is given by:

- **FPA**: the bid × winning prob. $\implies \mathbf{b}^{FPA}(v_i)G(v_i) = \mathbb{E}[b_{(2)}|b_{(1)} = v_i]G(v_i)$
- **SPA**: the EV of the $b_{(2)}$ cond. on being winning bid $\implies \mathbb{E}[b_{(2)}|b_{(1)} = v_i]G(v_i)$
- **APA**: coincides with the bid itself. \implies **b**^{APA} (v_i)

3.2 Applications of RET

(For this Chapter, I suggest checking out Exercises on TA Handouts and Past Exams.)

Definition 3.1 ("kth" Order Statistic). Make n independent draws from a random variable with distribution F_Y . The distribution of the kth order statistic is given by:

$$F_{Y(k)}(v) = \sum_{j=k}^{N} {\binom{N}{j}} \left[F_Y(y) \right]^j \left[1 - F_Y(y) \right]^{N-j}$$
(3.9)

Exercise 3.2 (Spring24 TA Handout 9 Ex3). Let $v \sim F[\underline{v}, \overline{v}]$. In a special case of "APA but pay the second-highest bid," we are interested in the distribution of **second-highest** value \iff second-order statistics $\iff N - 1th$ highest value:

$$F^{II}(y) = \sum_{j=N-1}^{N} {N \choose j} \left[F_Y(y) \right]^j \left[1 - F_Y(y) \right]^{N-j}$$
(3.10)

$$= \binom{N}{N} \left[F_Y(y) \right]^N \left[1 - F_Y(y) \right]^0 + \binom{N}{N-1} \left[F_Y(y) \right]^{N-1} \left[1 - F_Y(y) \right]^{(3.11)}$$

$$= \left[F_{Y}(y)\right]^{N} + N\left[F_{Y}(y)\right]^{N-1} \left[1 - F_{Y}(y)\right]^{1}$$
(3.12)

For instance, in a 2-bidder Auction with such format (N = 2), $F^{II}(y)$ collapses to:

$$F^{II}(y) = \left[F_{Y}(y)\right]^{2} + 2\left[F_{Y}(y)\right]^{1} \left[1 - F_{Y}(y)\right]^{1}$$
(3.13)

$$\implies f^{II}(y) = 2\left[1 - F(y)\right]f(y) \tag{3.14}$$

The (conditional) expected payment and Expected Revenue are thus:

$$m^{II,SPA}(v_i) = \mathbf{b}^{II,APA}(v_i) \cdot 2\left[1 - F(v_i)\right] f(v_i)$$
(3.15)

$$\implies ER^{II,SPA} = 2 \cdot \int_{\underline{v}}^{\overline{v}} \mathbf{b}^{II,APA}(y) \cdot 2\left[1 - F(y)\right] f(y) dy \qquad (3.16)$$

References

Gibbons, R. (2005). A primer in game theory. Pearson.

Jehle, G. A., & Reny, P. J. (2010). Advanced microeconomic theory. Addison-Wesley.

- Krishna, V. (2010). Auction theory. Academic Press. https://doi.org/10.1016/C2009-0-22474-3
- Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. Oxford University Press.