Lec 5: Asymptotic Normality of GMM

Eric Hsienchen Chu[∗]

Spring, 2024

(⊛) Suggested readings: Newey and McFadden [\(1994\)](#page-3-0), Ch3.3.

Motivation. Recall, given moment equation $\mathbb{E}[g(Z; \theta_0)] = 0$, we can form GMM estimators by the "quadratic" structure and choose a symmetric weighting matrix $\mathbf{\hat{W}}_{r \times r}$:

$$
\begin{cases} \hat{\mathbf{Q}}_n(\theta) = -\hat{g}_n(\theta)' \hat{\mathbf{W}} \hat{g}_n(\theta), \text{ where } \hat{g}_n(\theta) = \frac{1}{n} \sum_{i=1}^n g(Z_i; \theta) \in \mathbb{R}^r, \ \theta_0 \in \mathbb{R}^k\\ \mathbf{Q}_0(\theta) = -g_0(\theta)' \mathbf{W} g_0(\theta), \text{ where } g_0(\theta) = \mathbb{E}[g(Z; \theta)] \end{cases}
$$

⊛ Note that at true *θ*⁰ we have **E**[*g*(*Z*; *θ*0)] = 0 and that *k < r*: Over–ID case!

1 AN for GMM-type

Theorem 1.1 (AN for GMM-type (\star)). Suppose $\hat{\theta} = \arg \max_{\theta \in \Theta} \hat{Q}_n(\theta)$, consistency: $\hat{\theta} \stackrel{p}{\rightarrow} \theta_0$ and $\hat{\mathbf{W}} \stackrel{p}{\rightarrow} \mathbf{W}$. And, in addition: (A1) $\theta_0 \in int(\Theta);$ (A2) $\hat{g}_n(\theta) \in C^1(\mathcal{N})$ for open \mathcal{N} s.t. $\theta_0 \in \mathcal{N} \subseteq \Theta$ (continuously differentiable); $(A3)$ $\sqrt{n}\hat{g}_n(\theta_0) \stackrel{d}{\rightarrow} \mathcal{N}(0,\Sigma)$ for some $\Sigma > 0$ (distribution of sample analogs; STRONG); (A4) ∃**G**(θ) ∈ **R**^{*r*×*k*} continuous at θ_0 and sup *θ*∈N $\left\| \nabla_{\theta'} \hat{g}_n(\theta) - \mathbf{G}(\theta) \right\|$ $\stackrel{p}{\rightarrow} 0$ (uniform consistency); (A5) $\mathbf{G} := \mathbf{G}(\theta_0)$ s.t. $\mathbf{G}'\mathbf{W}\mathbf{G}$ nonsingular Then, $\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{d}{\rightarrow} \mathcal{N}\left(0, (\mathbf{G}'\mathbf{W}\mathbf{G})^{-1}\mathbf{G}'\mathbf{W}\mathbf{\Sigma}\mathbf{W}\mathbf{G}(\mathbf{G}'\mathbf{W}\mathbf{G})^{-1}\right)$ (1.1)

[∗]Department of Economics, University of Wisconsin-Madison. [hchu38@wisc.edu.](mailto:hchu38@wisc.edu) This is lecture notes from the second half of ECON710: Economic Statistics and Econometrics II. Instructor: Prof. Harold Chiang. Materials and sources: Harold's handwritten notes.

Proof. **WTS.** $\sqrt{n}(\hat{\theta} - \theta_0)$, where $\hat{\theta} = \arg \max_{\theta \in \Theta} \hat{\mathbf{Q}}_n(\theta) = -\hat{g}_n(\theta) \hat{\mathbf{W}} \hat{g}_n(\theta)$. Let's take FOC:

$$
FOC: 0 = \sqrt{2} \nabla_{\theta} \hat{\mathbf{Q}}_n(\hat{\theta}) \tag{1.2}
$$

$$
= \underbrace{\left[\frac{1}{n}\sum_{i=1}^{n}\nabla_{\theta'}g(Z_i;\hat{\theta})\right]'}_{\equiv \hat{G}_n(\hat{\theta})'}\hat{\mathbf{W}}\underbrace{\left[\frac{1}{n}\sum_{i=1}^{n}g(Z_i;\hat{\theta})\right]}_{\equiv \hat{g}_n(\hat{\theta})}
$$
(1.3)

$$
= \hat{G}_n(\hat{\theta})' \mathbf{W} \underbrace{\left[\frac{1}{n} \sum_{i=1}^n g(Z_i; \boldsymbol{\theta_0}) + \frac{1}{n} \sum_{i=1}^n \nabla_{\theta'} g(Z_i; \bar{\boldsymbol{\theta}}) (\hat{\theta} - \theta_0)\right]}_{\hat{\theta}}
$$
(1.4)

MV expansion for $\hat{g}_n(\hat{\theta})$ s.t. properly centered at θ_0 !

$$
= \hat{\mathbf{G}}_n(\hat{\theta})' \mathbf{W} \left[\hat{g}_n(\boldsymbol{\theta_0}) + \hat{\mathbf{G}}_n(\bar{\boldsymbol{\theta}}) (\hat{\theta} - \theta_0) \right] (\star)
$$
 (1.5)

By (A5), denote $\mathbf{G} \equiv \mathbf{G}(\theta_0)$. We notice that:

$$
\|\mathbf{G}_n(\hat{\theta}) - \mathbf{G}\| = \|\mathbf{G}_n(\hat{\theta}) - \mathbf{G}(\hat{\theta}) + \mathbf{G}(\hat{\theta}) - \mathbf{G}\|
$$
\n(1.6)

$$
\leq \|\hat{\mathbf{G}}_n(\hat{\theta}) - \mathbf{G}(\hat{\theta})\| + \|\mathbf{G}(\hat{\theta}) - \mathbf{G}(\theta_0)\| \leftarrow \text{by } \triangle - \text{ineq} \tag{1.7}
$$
\n
$$
\leq \sup_{\mathbf{S} \in \mathbb{R}^n} \|\nabla_{\theta} \hat{\mathbf{G}}(\hat{\theta}) - \mathbf{G}(\hat{\theta})\| + \|\mathbf{G}(\hat{\theta}) - \mathbf{G}(\theta_0)\| \tag{1.8}
$$

$$
\leq \underbrace{\sup_{\theta \in \mathcal{N}} \left\| \nabla_{\theta'} \hat{g}_n(\hat{\theta}) - \mathbf{G}(\hat{\theta}) \right\|}_{\frac{p}{\to} 0 \text{ by (A4) U.C.}} + \underbrace{\left\| \mathbf{G}(\hat{\theta}) - \mathbf{G}(\theta_0) \right\|}_{\frac{p}{\to} 0 \text{ by } \mathbf{G} \text{ cont.} \& \hat{\theta} \stackrel{p}{\to} \theta_0} \tag{1.8}
$$

$$
\xrightarrow{p} 0 \quad \text{(as } \hat{\theta} \in \mathcal{N} \text{ w.p. approaching } 1\text{)} \tag{1.9}
$$

Same argument applies to $\bar{\theta}$. So, we now have $\hat{\mathbf{G}}_n(\hat{\theta}) = \mathbf{G} + o_p(1)$, $\hat{\mathbf{G}}_n(\bar{\theta}) = \mathbf{G} + o_p(1)$, and $\mathbf{\hat{W}} = \mathbf{W} + o_p(1)$ (since $\mathbf{\hat{W}} \stackrel{p}{\rightarrow} \mathbf{W}$). Jointly, the three stochastic order notations give us:

$$
\hat{\mathbf{G}}_n(\hat{\theta})'\hat{\mathbf{W}}\hat{\mathbf{G}}_n(\bar{\theta}) = \mathbf{G}'\mathbf{W}\mathbf{G} + o_p(1) \qquad (1.10)
$$

$$
(CMT): \left(\hat{\mathbf{G}}_n(\hat{\theta})'\hat{\mathbf{W}}\hat{\mathbf{G}}_n(\bar{\theta})\right)^{-1} = (\mathbf{G}'\mathbf{W}\mathbf{G})^{-1} + o_p(1) \qquad (1.11)
$$

We can apply CMT to Eqn (1.11) since $(A5)$: **G'WG** nonsingular (>0) . Then, by Equation (\bigstar) :

$$
\sqrt{n}(\hat{\theta} - \theta_0) = -\underbrace{\left(\hat{\mathbf{G}}_n(\hat{\theta})'\hat{\mathbf{W}}\hat{\mathbf{G}}_n(\bar{\theta})\right)^{-1}}_{\frac{p}{\sqrt{N}}(\mathbf{G}'\mathbf{W}\mathbf{G})^{-1}} \underbrace{\left(\frac{\hat{\mathbf{G}}_n(\hat{\theta})'\hat{\mathbf{W}}}{\hat{\mathbf{W}}(\theta_0)}\right]}_{\mathcal{P}(\mathbf{G}'\mathbf{W})} \qquad (1.12)
$$

$$
\stackrel{d}{\rightarrow} - \left[\left(\mathbf{G}' \mathbf{W} \mathbf{G} \right)^{-1} \mathbf{G}' \mathbf{W} \right] \mathcal{N}(0, \Sigma) \leftarrow \text{by CLT} \tag{1.13}
$$

$$
= \mathcal{N}\left(0, \left(\mathbf{G}^{\prime}\mathbf{W}\mathbf{G}\right)^{-1}\mathbf{G}^{\prime}\mathbf{W}\mathbf{\Sigma}\mathbf{W}\mathbf{G}\left(\mathbf{G}^{\prime}\mathbf{W}\mathbf{G}\right)^{-1}\right) \tag{1.14}
$$

Eqn [\(1.14\)](#page-1-1) holds by Slutsky's Theorem. We successfully show the AN for GMM-type. \Box **Question.** What are **G** & **Σ**?

Answer. By construction, we have:

- $\mathbf{G} = \mathbb{E}\left[\nabla_{\theta'} g(Z; \theta_0)\right]$ (derivative of moment equation, evaluated at θ_0)
- $\Sigma = \mathbb{E}[g(Z; \theta_0)g(Z; \theta_0)'] = \text{Var}(g(Z; \theta_0)) \text{ (since } \mathbb{E}[g(Z; \theta_0)] = 0)$

Question. How to choose **W** "optimally"? **Answer.** We set $\mathbf{W} = \Sigma^{-1}$, then

$$
\left(\mathbf{G}^{\prime}\mathbf{W}\mathbf{G}\right)^{-1}\mathbf{G}^{\prime}\mathbf{W}\mathbf{\Sigma}\mathbf{W}\mathbf{G}\left(\mathbf{G}^{\prime}\mathbf{W}\mathbf{G}\right)^{-1}=\left(\mathbf{G}^{\prime}\mathbf{\Sigma}^{-1}\mathbf{G}\right)^{-1},\tag{1.15}
$$

which is more concise & smaller (& more **efficient** ⊛)

2 Variance Estimation

Motivation. Since we claim "efficient", we need to show the variance of GMM estimator at Eqn [\(1.15\)](#page-2-0) (with optimal $\mathbf{W} = \mathbf{\Sigma}^{-1}$) is smaller.

Claim 2.1 ("GMM is efficient").
$$
(G'WG)^{-1}G'W\Sigma WG (G'WG)^{-1} - (G'\Sigma^{-1}G)^{-1} \geq 0
$$

Proof. We rely on an algebraic trick with *idempotence*:

$$
\implies \left(\mathbf{G}'\mathbf{W}\mathbf{G}\right)^{-1}\mathbf{G}'\mathbf{W}\mathbf{\Sigma}\mathbf{W}\mathbf{G}\left(\mathbf{G}'\mathbf{W}\mathbf{G}\right)^{-1} - \left(\mathbf{G}'\mathbf{\Sigma}^{-1}\mathbf{G}\right)^{-1} \tag{2.1}
$$
\n
$$
\left(\mathbf{G}'\mathbf{W}\mathbf{G}\right)^{-1}\mathbf{G}'\mathbf{W}\mathbf{\Sigma}^{\frac{1}{2}}\left[\mathbf{I} - \mathbf{\Sigma}^{-\frac{1}{2}}\mathbf{G}\left(\mathbf{G}'\mathbf{\Sigma}^{-1}\mathbf{G}\right)^{-1}\mathbf{G}'\mathbf{\Sigma}^{-\frac{1}{2}}\right]\mathbf{\Sigma}^{\frac{1}{2}}\mathbf{W}\mathbf{G}\left(\mathbf{G}'\mathbf{W}\mathbf{G}\right)^{-1}\tag{2.1}
$$

$$
= \underbrace{\left(\mathbf{G}'\mathbf{W}\mathbf{G}\right)^{-1}\mathbf{G}'\mathbf{W}\Sigma^{\frac{1}{2}}}_{\equiv A} \underbrace{\left[\mathbf{I} - \Sigma^{\frac{-1}{2}}\mathbf{G}\left(\mathbf{G}'\Sigma^{-1}\mathbf{G}\right)^{-1}\mathbf{G}'\Sigma^{\frac{-1}{2}}\right]}_{\equiv \mathbf{I} - B} \underbrace{\Sigma^{\frac{1}{2}}\mathbf{W}\mathbf{G}\left(\mathbf{G}'\mathbf{W}\mathbf{G}\right)^{-1}}_{\equiv A} (2.2)
$$

$$
= \mathcal{A} \left[\mathbf{I} - \mathcal{B} \right] \mathcal{A}'
$$
\n
$$
= \mathcal{A} \left[\mathbf{I} - \mathcal{B} \right] \left[\mathbf{I} - \mathcal{B} \right] \mathcal{A}' \leftarrow \text{ since } \left[\mathbf{I} - \mathcal{B} \right] \text{ idempotent & } \mathcal{B} \text{ symmetric}
$$
\n
$$
(2.3)
$$
\n
$$
(2.4)
$$

$$
= \mathcal{A} \left[\mathbf{I} - \mathcal{B} \right] \left[\mathbf{I} - \mathcal{B} \right] \mathcal{A}' \leftarrow \text{ since } \left[\mathbf{I} - \mathcal{B} \right] \text{ idempotent & } \mathcal{B} \text{ symmetric} \tag{2.4}
$$
\n
$$
\geq 0 \tag{2.5}
$$

 \Box

Eqn [\(2.5\)](#page-2-1) holds since being a quadratic form.

Remark. $W = \Sigma^{-1}$ is called **efficient weighting matrix**. But it is actually *not feasible* since $\Sigma = \mathbb{E}\left[g(Z;\theta_0)g(Z;\theta_0)'\right]$ is unknown (precisely, we don't know θ_0). In practice, we use **2-step GMM**.

Definition 2.1 (2-step GMM)**.** We employ 2-step GMM to get away with the unknown $\Sigma(\Sigma^{-1})$ (the variance of moment equation evaluated at true θ_0):

- 1) Estimate θ by first choosing $\hat{\mathbf{W}} = \mathbf{I}_r \implies$ get θ^{1st} (not efficient, but consistent)
- 2 Estimate Σ by sample analog $\hat{\Sigma} = \frac{1}{n} \sum_{n=1}^{n}$ $\sum_{i=1}^{\infty} g(Z_i; \theta^{\text{1st}})g(Z_i; \theta^{\text{1st}})'$

3 Estimate θ again by $\mathbf{\hat{W}} = \mathbf{\hat{\Sigma}} \implies$ get θ^{2nd} \Box

Summary (Comparison: Variance Estimation)**.** In general, we have "MLE–type" or "GMMtype" estimators and estimate each of their variance by:

$$
\begin{aligned}\n\textcircled{\!\!\!\!}\n\text{MLE-type: } & \sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{d} \mathcal{N}\left(0, \mathbf{H}^{-1}\mathcal{J}\mathbf{H}^{-1}\right) \\
\implies \text{Var estimation by } & \hat{\mathbf{V}}(\hat{\theta}) = \hat{\mathbf{H}}^{-1}\hat{\mathcal{J}}\hat{\mathbf{H}}^{-1}, \text{ where } \begin{cases}\n\hat{\mathbf{H}} &= \frac{1}{n} \sum\limits_{i=1}^{n} \nabla_{\theta\theta'} g(Z_i; \hat{\theta}) \\
\hat{\mathcal{J}} &= \frac{1}{n} \sum\limits_{i=1}^{n} \nabla_{\theta} g(Z_i; \hat{\theta}) \nabla_{\theta'} g(Z_i; \hat{\theta})'\n\end{cases}\n\end{aligned}
$$

$$
\begin{aligned}\n\textcircled{\tiny{\#}} \text{ GMM-type: } &\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{d} \mathcal{N} \left(0, (\mathbf{G}' \mathbf{W} \mathbf{G})^{-1} \mathbf{G}' \mathbf{W} \mathbf{\Sigma} \mathbf{W} \mathbf{G} (\mathbf{G}' \mathbf{W} \mathbf{G})^{-1} \right) \\
&\implies \text{Var estimation by } &\hat{\mathbf{V}}(\hat{\theta}) = (\hat{\mathbf{G}}' \hat{\mathbf{W}} \hat{\mathbf{G}})^{-1} \hat{\mathbf{G}}' \hat{\mathbf{W}} \hat{\mathbf{\Sigma}} \hat{\mathbf{W}} \hat{\mathbf{G}} (\hat{\mathbf{G}}' \hat{\mathbf{W}} \hat{\mathbf{G}})^{-1} \right), \text{ where}\n\end{aligned}
$$

$$
\begin{cases}\n\hat{\mathbf{G}} = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta'} g(Z_i; \hat{\theta}) \\
\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} g(Z_i; \hat{\theta}) g(Z_i; \hat{\theta})'\n\end{cases}
$$
\n(2.6)

Corollary 2.1. Under the same conditions as in $(AN-GMM)$, if $\hat{\Sigma} \overset{p}{\to} \Sigma$, then $\hat{V}(\hat{\theta}) \overset{p}{\to} V$. **Remark.** Similar result holds for **(AN–MLE)**.

References

Newey, W. K., & McFadden, D. (1994). Chapter 36 large sample estimation and hypothesis testing. Elsevier. [https://doi.org/10.1016/S1573-4412\(05\)80005-4](https://doi.org/10.1016/S1573-4412(05)80005-4)