

Lec 3: Consistency of GMM

Eric Hsienchen Chu*

Spring, 2024

(⊗) Suggested readings: Newey and McFadden (1994), Ch2.5.

Overview. In Lec 2 we introduce the Consistency of MLE. We now turn to discuss **Consistency of GMM**. Recall that we use GMM when having overidentification— We don't need the "quadratic" form in *Just-ID* case since GMM collapses to MLE.

1 GMM

Assume $\mathbb{E}[g(Z; \theta)] = 0$, where $g(\zeta; \theta) = \begin{bmatrix} g_1(\zeta; \theta) \\ \vdots \\ g_r(\zeta; \theta) \\ \vdots \\ g_k(\zeta; \theta) \end{bmatrix}$, $\theta \in \Theta \subseteq \mathbb{R}^r$, $k > r$.

We have k equations with r unknowns $(\theta) \implies$ Overidentification

Definition 1.1 (GMM). A GMM estimator is defined as the maximizer of $\hat{\mathbb{Q}}_n(\theta)$:

$$\hat{\theta}^{GMM} = \arg \max_{\theta} \hat{\mathbb{Q}}_n(\theta) \quad (1.1)$$

$$= \arg \max_{\theta} - \left(\frac{1}{n} \sum_{i=1}^n g(Z_i; \theta) \right)' \hat{\mathbf{W}} \left(\frac{1}{n} \sum_{i=1}^n g(Z_i; \theta) \right), \quad (1.2)$$

where $\hat{\mathbf{W}}$ is symmetric p.d. weighting matrix.

$$\implies \mathbb{Q}_0(\theta) = -\mathbb{E}[g(Z; \theta)]' \mathbf{W} \mathbb{E}[g(Z; \theta)], \text{ where } \mathbf{W} \text{ is } \text{—— matrix} \quad (1.3)$$

*Department of Economics, University of Wisconsin-Madison. hchu38@wisc.edu. This is lecture notes from the second half of ECON710: Economic Statistics and Econometrics II. Instructor: Prof. Harold Chiang. Materials and sources: Harold's handwritten notes.

2 Consistency of GMM

Theorem 2.1 (Consistency; GMM). Suppose $(Z_i)_{i=1}^n \stackrel{iid}{\sim} f(\zeta; \theta)$ and $\hat{\mathbf{W}} \xrightarrow{p} \mathbf{W}$ and:

① \mathbf{W} is symmetric & p.d., and $\mathbf{W}\mathbb{E}[g(Z; \theta)] = 0$ only if $\theta = \theta_0$ (\star)

② $\theta_0 \in \Theta$, where Θ is compact

③ $\theta \mapsto g(Z; \theta)$ is continuous (a.e.) $\forall \theta \in \Theta, Z$ w.p.1.

④ $\mathbb{E} \left[\sup_{\theta \in \Theta} \|g(Z; \theta)\| \right] < \infty$

Then, $\hat{\theta}^{GMM} \xrightarrow{p} \theta_0$.

Remark. We require more equations in GMM to gain "efficiency" (smaller variance). So, we choose data-specific $\hat{\mathbf{W}}$ to ensure this efficiency.

Proof. Consider $\begin{cases} g_0(\theta) = \mathbb{E}[g(Z; \theta)] \\ \hat{g}_n(\theta) = \frac{1}{n} \sum_{i=1}^n g(Z_i; \theta) \end{cases}$, then we define $\begin{cases} \mathbf{Q}_0(\theta) := -g_0(\theta)' \mathbf{W} g_0(\theta) \\ \hat{\mathbf{Q}}_n(\theta) := -\hat{g}_n(\theta)' \hat{\mathbf{W}} \hat{g}_n(\theta) \end{cases}$.

To apply **Consistency Theorem** (Theorem (1.1) in Lec 2), we need to verify its (i)–(iv).

- (i) θ_0 unique maximizer: we first note that, by ①, $0 \neq \mathbf{W} g_0(\theta) \forall \theta \neq \theta_0$ (\spadesuit).
 \implies By symmetric & p.d. of \mathbf{W} (full rank),

$$\exists \mathbf{R} \text{ s.t. } \mathbf{W} = \mathbf{R}' \mathbf{R} \text{ and } \mathbf{R}^{-1} \text{ exists (non-singular)} \quad (2.1)$$

We can thus rewrite (\spadesuit) by:

$$0 \neq \mathbf{W} g_0(\theta) = \mathbf{R}' \mathbf{R} g_0(\theta) \quad (2.2)$$

$$\implies 0 \neq (\mathbf{R}')^{-1} \mathbf{R}' \mathbf{R} g_0(\theta) = \mathbf{R} g_0(\theta) \leftarrow \text{since } \mathbf{R}^{-1} \text{ exists} \quad (2.3)$$

Finally, we rewrite $\mathbf{Q}_0(\theta)$ and find that $\mathbf{Q}_0(\theta) < \mathbf{Q}_0(\theta_0)$, i.e., θ_0 unique maximizer:

$$\mathbf{Q}_0(\theta) = -g_0(\theta)' \mathbf{W} g_0(\theta) \quad (2.4)$$

$$= -g_0(\theta)' \mathbf{R}' \mathbf{R} g_0(\theta) \quad (2.5)$$

$$= -\underbrace{(\mathbf{R} g_0(\theta))' (\mathbf{R} g_0(\theta))}_{\text{quadratic form: } > 0} \quad (2.6)$$

$$< 0 \quad (2.7)$$

$$= -g_0(\theta_0)' \underbrace{\mathbf{W} g_0(\theta_0)}_{= 0 \text{ by ①}} = \mathbf{Q}_0(\theta_0) \quad (\checkmark) \quad (2.8)$$

- (ii) Θ compact: by assumption ② (\checkmark)

- (iii) continuity & (iv) uniform consistency : we invoke **ULLN** (see Lec 2).

By ULLN with ②–④, we have

$$\begin{cases} g_0(\theta) \text{ is continuous } \forall \theta \in \Theta, Z \text{ w.p.1} \\ \sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^n g_j(Z_i; \theta) - \mathbb{E}[g_j(Z; \theta)] \right| \xrightarrow{p} 0 \text{ for } j = 1, \dots, k \implies \sup_{\theta \in \Theta} \|\hat{g}_n(\theta) - g_0(\theta)\| \xrightarrow{p} 0 \end{cases}$$

For (iii): continuity of $Q_0(\cdot)$, it is satisfied since $g_0(\cdot)$ is continuous by **ULLN**
 $\implies \mathbb{Q}_0(\cdot) = -g_0(\cdot)'\mathbf{W}g_0(\cdot)$ is continuous (✓)

For (iv): $\hat{\mathbb{Q}}_n$ uniformly consistent for \mathbb{Q}_0 , we **WTS** $\sup_{\theta \in \Theta} |\hat{\mathbb{Q}}_n(\theta) - \mathbb{Q}_0(\theta)| \xrightarrow{p} 0$

By a clever way of "adding and subtracting 0", we obtain:

$$|\hat{\mathbb{Q}}_n - \mathbb{Q}_0| = |\hat{g}'_n \hat{\mathbf{W}} \hat{g}_n - g'_0 \mathbf{W} g_0| \quad (2.9)$$

$$= |((\hat{g}_n - g_0) + g_0)' \hat{\mathbf{W}} ((\hat{g}_n - g_0) + g_0) - g'_0 \mathbf{W} g_0| \quad (2.10)$$

$$= |(\hat{g}_n - g_0)' \hat{\mathbf{W}} (\hat{g}_n - g_0) + 2g'_0 \hat{\mathbf{W}} (\hat{g}_n - g_0) + g'_0 (\hat{\mathbf{W}} - \mathbf{W}) g_0| \quad (2.11)$$

$$\leq |(\hat{g}_n - g_0)' \hat{\mathbf{W}} (\hat{g}_n - g_0)| + 2|g'_0 \hat{\mathbf{W}} (\hat{g}_n - g_0)| + |g'_0 (\hat{\mathbf{W}} - \mathbf{W}) g_0| \quad (2.12)$$

$$\leq \underbrace{\|\hat{g}_n - g_0\|^2}_{\text{ULLN: } \xrightarrow{p} 0} \cdot \|\hat{\mathbf{W}}\| + 2\|g_0\| \cdot \underbrace{\|\hat{g}_n - g_0\|}_{\text{ULLN: } \xrightarrow{p} 0} \cdot \|\hat{\mathbf{W}}\| + \|g_0\|^2 \cdot \underbrace{\|\hat{\mathbf{W}} - \mathbf{W}\|}_{\xrightarrow{p} 0} \quad (2.13)$$

$$\xrightarrow{p} 0 \quad (2.14)$$

Equation (2.12) holds by \triangle -ineq. Equation (2.13) holds by *spectral norm* & $\|g_0\| = O(1)$ (*bounded*) as it's continuous on a compact set Θ . (✓)

Since we have checked (i)–(iv), by **Consistency Theorem** we conclude GMM is consistent.

□

Remark. Newey and McFadden (1994): "[T]he conditions of this result are quite weak, allowing for *discontinuity* in the moment functions. This Theorem remains true if the *i.i.d* assumption is replaced with the condition that $(Z_i)_{i=1}^n$ is stationary and ergodic."

References

Newey, W. K., & McFadden, D. (1994). Chapter 36 large sample estimation and hypothesis testing. Elsevier. [https://doi.org/10.1016/S1573-4412\(05\)80005-4](https://doi.org/10.1016/S1573-4412(05)80005-4)