

Lec 2: Consistency

Eric Hsienchen Chu*

Spring, 2024

(*) Suggested reading: Newey and McFadden (1994), Section 2

1 Consistency

Motivation. We know $\hat{Q}_n(\theta) \xrightarrow{p} Q_0(\theta)$ pointwise in θ by WLLN. But does it sufficiently imply $\hat{\theta} \xrightarrow{p} \theta_0$? The answer is **NO!** We need $\sup_{\theta \in \Theta} |\hat{Q}_n(\theta) - Q_0(\theta)| \xrightarrow{p} 0$ (uniform consistency in θ) + "regularity conditions". Thus, let's begin by showing **Consistency Theorem**.

Theorem 1.1 (Consistency of $\hat{\theta}$). $\hat{\theta} \xrightarrow{p} \theta_0$ if:

- (i) θ_0 is **unique** maximizer for Q_0 (*identification*),
- (ii) Θ is compact,
- (iii) Q_0 is continuous in θ (parameter of interest), and
- (iv) \hat{Q}_n is **uniformly consistent** for Q_0 .

Proof. For any $\varepsilon > 0$, we know $\hat{Q}_n(\hat{\theta}) \geq \hat{Q}_n(\theta_0) > \hat{Q}_n(\theta_0) - \varepsilon$, since $\hat{\theta}$ is maximizer of \hat{Q}_n . By (iv), as $n \rightarrow \infty$, for any $\theta \in \Theta$, we have $|\hat{Q}_n(\theta) - Q_0(\theta)| < \varepsilon$ with probability 1.

$$\implies \begin{cases} \hat{Q}_n(\hat{\theta}) - Q_0(\hat{\theta}) < \varepsilon & \implies Q_0(\hat{\theta}) > \hat{Q}_n(\hat{\theta}) - \varepsilon \\ Q_0(\theta_0) - \hat{Q}_n(\theta_0) < \varepsilon & \implies \hat{Q}_n(\theta_0) > Q_0(\theta_0) - \varepsilon \end{cases} \quad (1.1)$$

Then, as $n \rightarrow \infty$, we have:

$$Q_0(\hat{\theta}) > \hat{Q}_n(\hat{\theta}) - \varepsilon > (\hat{Q}_n(\theta_0) - \varepsilon) - \varepsilon \quad (1.2)$$

$$> (Q_0(\theta_0) - \varepsilon) - 2\varepsilon = Q_0(\theta_0) - 3\varepsilon, \text{ with probability 1} \quad (1.3)$$

*Department of Economics, University of Wisconsin-Madison. hchu38@wisc.edu. This is lecture notes from the second half of ECON710: Economic Statistics and Econometrics II. Instructor: Prof. Harold Chiang. Materials and sources: Harold's handwritten notes.

Let \mathcal{N} be open set s.t. $\theta_0 \in \mathcal{N} \subseteq \Theta$, then $\mathcal{N}^c := \Theta \cap \mathcal{N}^c$ is compact by (ii) (closed subset of a compact set). Therefore,

$$\exists \theta^* \in \mathcal{N}^c \text{ s.t. } \sup_{\theta \in \Theta} \mathbf{Q}_0(\theta) = \mathbf{Q}_0(\theta^*) \leftarrow \text{by (iii) continuity} \quad (1.4)$$

$$< \mathbf{Q}_0(\theta_0) \leftarrow \text{by } \theta_0 = \arg \max \mathbf{Q}_0 \quad (1.5)$$

We now can pick our $\varepsilon = \frac{1}{3} [\mathbf{Q}_0(\theta_0) - \mathbf{Q}_0(\theta^*)] > 0$ so that, as $n \rightarrow \infty$, equation (4) yields $\mathbf{Q}_0(\hat{\theta}) > \mathbf{Q}_0(\theta^*)$ with probability 1, i.e., $\hat{\theta} \notin \mathcal{N}^c$ w.p.1 $\implies \hat{\theta} \in \mathcal{N}$ w.p.1 $\implies \hat{\theta} \xrightarrow{p} \theta_0$. \square

Remark. Only Condition (i) *uniqueness of maximizer* θ_0 is required. This makes sure that our estimator $\hat{\theta}$ is centering at the true maximizer θ_0 (and therefore *consistent*), not multiple $\hat{\theta}$ and being inconsistent.

Question. How do we check the Consistency conditions?

Answer. (i) depends case-by-case; (ii) holds normally by assumption; (iii) & (iv) jointly implied by **Uniform LLN (ULLN)**

2 ULLN

Motivation. We rely on **ULLN** to determine Condition (iii) & (iv) in **Consistency Theorem** so that we make sure our estimator $\hat{\theta}$ is consistent for θ_0 .

Theorem 2.1 (ULLN). Suppose $(Z_i)_{i=1}^n \stackrel{iid}{\sim} Z$ and Θ compact. If:

(i) $\theta \mapsto g(Z; \theta)$ is continuous (a.e.) $\forall \theta \in \Theta$, and

(ii) \exists a function $\zeta \mapsto h(\zeta)$ s.t. $\begin{cases} |g(\zeta; \theta)| \leq h(\zeta) \forall \theta \in \Theta, (\text{i.e., } h(\zeta) \text{ dominating func w/o param}) \\ \mathbb{E}[h(Z)] < \infty \end{cases}$

Then,

① $\theta \mapsto \mathbb{E}[g(Z; \theta)]$ is continuous in θ (\leftarrow Condition (iii) \checkmark)

② $\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^n g(Z_i; \theta) - \mathbb{E}[g(Z; \theta)] \right| \xrightarrow{p} 0$ (\leftarrow Condition (iv) \checkmark)

Proof. (Harold: "Take ECON715") \square

Remark. Recall, [Lec 1] *uniform consistency* tells us $\sup_{\theta \in \Theta} |\hat{Q}_n(\theta) - Q_0(\theta)| \xrightarrow{p} 0 \rightsquigarrow o_p(1)$.

Here, we use $\frac{1}{n} \sum_{i=1}^n g(Z_i; \theta)$ as $\hat{Q}_n(\theta)$ and use $\mathbb{E}[g(Z; \theta)]$ as true objective function $Q_0(\theta)$.

Example 2.1 (NLS ✓). Consider $\mathbf{Q}_0(\theta) = -\mathbb{E}[(Y - \mu(x; \theta))^2] =: \mathbb{E}[g(Z; \theta)]$, then ULLN is applicable if μ satisfies ULLN (i) & (ii).

Example 2.2 (MLE ✓). Consider $\mathbf{Q}_0(\theta) = \mathbb{E}[\ln f(Z; \theta)] =: \mathbb{E}[g(Z; \theta)]$, where $Z \sim^d f(Z; \theta)$ and f is known up to θ (pdf).

Example 2.3 (GMM ✗). Goal: $\mathbb{E}[g(Z; \theta_0)] = 0$

\implies Consider $\mathbf{Q}_0(\theta) = -\mathbb{E}[g(Z; \theta)]' \mathbf{W} \mathbb{E}[g(Z; \theta)]$, which is a quadratic form of $\mathbb{E}[g(Z; \theta)]$
 \implies *Cannot directly apply ULLN!*

Summary. Therefore, we can categorize above discussion into:

- MLE-type (★)
- GMM-type ("minimum distance"): collapse to MLE-type when Just-ID case.

3 Consistency of MLE

Theorem 3.1 (Consistency; MLE). Suppose $(Z_i)_{i=1}^n \stackrel{iid}{\sim} f(\zeta; \theta)$, where f : known pdf given $\theta \in \Theta$, then $\hat{\theta} \xrightarrow{p} \theta_0$ if:

- ① $\theta \neq \theta_0 \implies f(Z; \theta) \neq f(Z; \theta_0)$ (i.e., different density) ,
- ② Θ is compact,
- ③ $\theta \mapsto \ln f(Z; \theta)$ is continuous (a.e.) $\forall \theta \in \Theta$ and Z_i , and
- ④ $\mathbb{E} \left[\sup_{\theta \in \Theta} |\ln f(Z; \theta)| \right] < \infty$.

Proof. Since Theorem 1.1 (Consistency) condition (ii) is checked by ②, we now need to verify condition (i): unique maximizer [Spring 2023 Final Q1].

Recall that $\mathbf{Q}_0 := \mathbb{E}[\ln f(Z; \theta)]$ for MLE.

\implies **WTS.** $\mathbf{Q}_0(\theta_0) > \mathbf{Q}_0(\theta) \forall \theta \neq \theta_0$ (⊗ intuition: $\theta_0 = \arg \max_{\theta} \mathbf{Q}_0$)

$$\mathbf{Q}_0(\theta) - \mathbf{Q}_0(\theta_0) = \mathbb{E}[\ln f(Z; \theta) - \ln f(Z; \theta_0)] = \mathbb{E} \left[\ln \left(\frac{f(Z; \theta)}{f(Z; \theta_0)} \right) \right] \quad (3.1)$$

$$< \ln \mathbb{E} \left[\frac{f(Z; \theta)}{f(Z; \theta_0)} \right] \leftarrow \text{"<" holds by Jensen's Ineq & ① diff density } \forall \theta \neq \theta_0 \quad (3.2)$$

$$= \ln \int \frac{f(\zeta; \theta)}{f(\zeta; \theta_0)} \cdot \underbrace{f(\zeta; \theta_0)}_{\text{true pdf}} d\zeta = \ln \int f(\zeta; \theta) d\zeta = \ln 1 = 0 \quad (3.3)$$

Thus, we verify $\mathbb{Q}_0(\theta_0) > \mathbb{Q}_0(\theta) \forall \theta \neq \theta_0$, i.e., θ_0 is unique maximizer & condition (i) (✓). We now use ③ & ④ to check if ULLN is applicable so that Consistency condition (iii) & (iv) will be jointly satisfied.

- Define $g(\zeta; \theta) := \ln f(\zeta; \theta)$, then by ③ we note $g(Z; \theta)$ is conti. $\forall \theta \in \Theta$ & Z w.p.1.

- Let $h(\zeta) = \sup_{\theta \in \Theta} |\ln f(\zeta; \theta)|$, then $\begin{cases} |g(\zeta; \theta)| = |\ln f(\zeta; \theta)| \leq \sup_{\theta \in \Theta} |\ln f(\zeta; \theta)| = h(\zeta; \theta) \forall \theta \in \Theta \\ \mathbb{E}[h(Z)] = \mathbb{E} \left[\sup_{\theta \in \Theta} |\ln f(Z; \theta)| \right] < \infty \leftarrow \text{by ④} \end{cases}$

So, ULLN is satisfied, and by ULLN we know Consistency condition (iii) & (iv) (✓).

Ultimately, by Theorem 1.1, we conclude MLE is consistent. \square

4 Exercise from DIS SEC

Exercise 4.1 (Spring24 TA Handout7 Ex3). Consider the simple linear model $Y_i = \beta_0 X_i + e_i$ where $\mathbb{E}[e_i|X_i] = 0$. Here Y_i and X_i are scalars with $\mathbb{E}[Y_i^4] < \infty$ and $\mathbb{E}[X_i^4] < \infty$. Take the parameter space $\Theta = [-1, 1]$ and assume $\beta_0 \in \text{int}(\Theta)$. Then, we define an M-estimator for β as follows:

$$\hat{\beta} = \underset{\beta \in [-1, 1]}{\operatorname{argmin}} S_n(\beta) \text{ where } S_n(\beta) = \frac{1}{n} \sum_{i=1}^n (Y_i - \beta X_i)^2 \quad (4.1)$$

(a) Show that $\sup_{\beta \in [-1, 1]} |S_n(\beta) - S(\beta)| \xrightarrow{p} 0$ where $S(\beta) = \mathbb{E}[(Y_i - \beta X_i)^2]$.

(b) Show that $\hat{\beta} \xrightarrow{p} \beta_0$.

Solution (a). Essentially, we want to invoke **ULLN**. For ULLN (i): *continuous in parameter*, we see that $(Y_i - \beta X_i)^2$ is continuous in β (✓). To check ULLN (ii) *dominating function w/o parameter*, we define $g(Y_i, X_i; \beta) = (Y_i - \beta X_i)^2$ and find that:

$$|g(Y_i, X_i; \beta)| = |(Y_i - \beta X_i)^2| = (Y_i - \beta X_i)^2 \quad (4.2)$$

$$\leq 2(Y_i^2 + \beta^2 X_i^2) \leftarrow \text{by CR Ineq.} \quad (4.3)$$

$$\leq 2(Y_i^2 + 1^2 X_i^2) \leftarrow \text{by } \beta \in [-1, 1] \Rightarrow \beta^2 \in [0, 1]. \quad (4.4)$$

So, we can let $h(Y_i, X_i) = 2(Y_i^2 + X_i^2)$ and that ULLN (ii) is satisfied by $|g(Y_i, X_i; \beta)| \leq h(Y_i, X_i)$, with $\mathbb{E}[h(Y_i, X_i)] = 2(\mathbb{E}[Y_i^2] + \mathbb{E}[X_i^2]) < \infty$ (since 4th moments exist). By Theorem 2.1 (ULLN), the statement is true.

Solution (b). Since $\Theta = [-1, 1] \subset \mathbb{R}$ is closed and bounded, by Heine-Borel Theorem we know Θ is compact. We now only need to check Theorem 1.1 (Consistency) (i): β_0 being

unique minimizer for $S(\beta)$ ¹. First note that $S(\beta_0) = \mathbb{E}[(Y_i - \beta_0 X_i)^2] = \mathbb{E}[e_i^2]$. Then, as we take any $\tilde{\beta} \neq \beta_0$, we find that:

$$S(\tilde{\beta}) = \mathbb{E}[(Y_i - \tilde{\beta} X_i)^2] \quad (4.5)$$

$$= \mathbb{E}[(\beta_0 X_i + e_i - \tilde{\beta} X_i)^2] \leftarrow \text{plugging in } Y_i. \quad (4.6)$$

$$= \mathbb{E}[((\beta_0 - \tilde{\beta}) X_i + e_i)^2] \quad (4.7)$$

$$= (\beta_0 - \tilde{\beta})^2 \mathbb{E}[X_i^2] + \mathbb{E}[e_i^2] + \underbrace{2(\beta_0 - \tilde{\beta}) \mathbb{E}[X_i e_i]}_{= 0 \text{ by } \mathbb{E}[e_i | X_i] = 0} \quad (4.8)$$

$$= (\beta_0 - \tilde{\beta})^2 \mathbb{E}[X_i^2] + \mathbb{E}[e_i^2] \quad (4.9)$$

$$> \mathbb{E}[e_i^2] = S(\beta_0) \quad (4.10)$$

So, we verify that β_0 is unique minimizer of $S(\beta)$. By Theorem 1.1 (Consistency), $\hat{\beta} \xrightarrow{p} \beta_0$.

References

Newey, W. K., & McFadden, D. (1994). Chapter 36 large sample estimation and hypothesis testing. Elsevier. [https://doi.org/10.1016/S1573-4412\(05\)80005-4](https://doi.org/10.1016/S1573-4412(05)80005-4)

¹Here, we construct $\hat{\beta} = \arg \min S_n(\beta)$ rather than $\arg \max$, so we need to verify unique MINIMIZER.