# Lec 10: Nonparametric Model (ML)

Eric Hsienchen Chu\*

Spring, 2024

(\*) Suggested readings: Hansen (2022), Ch19.

## 1 Nonparametric & ML

**Overview.** Unless an economic model restricts the form of m(x) to a parametric function, m(x) can take any nonlinear shape and is therefore **nonparametric**.

$$Y = m(X) + \varepsilon, \ \mathbb{E}[\varepsilon|X] = 0 \tag{1.1}$$

Here, the parameter of interest  $m(X) = \mathbb{E}[Y|X]$  is *infinite* dimensional. In particular, we may want to discuss kernel density estimators of m(x).

Question. How do we estimate  $\mathbb{E}[Y|X=x]=m(x)$ , where X has continuum supp? **Answer.** There are several ways:

- ①  $\hat{m}(x) = \frac{1}{|\mathcal{N}(x)|} \sum_{i \in \mathcal{N}(x)} Y_i$ , where  $\mathcal{N}(x) \equiv \{i = 1, \dots, n : x_i \text{ "close" to } x\}$ 
  - $\implies$  k-nearest neighbors (KNN), Regression trees,  $\cdots$
- ②  $m(x) = \mathbb{E}[Y|X = x] = \int y \cdot f_{Y|X}(y|x) dy = \int y \frac{f_{YX}(y,x)}{f_X(x)} dy$   $\implies$  It suffices to estimate the **density**  $f_{YX} \& f_X!$
- \* Machine Learning ("Modern Nonparametrics")
  - Bias–variance Trade–off  $(\bigstar)$
  - Curse of dimensionality
  - Tuning Parameter Selection

<sup>\*</sup>Department of Economics, University of Wisconsin-Madison. hchu38@wisc.edu. This is lecture notes from the second half of ECON710: Economic Statistics and Econometrics II. Instructor: Prof. Harold Chiang. Materials and sources: Harold's handwritten notes.

## 2 Kernel Density Estimation

**Motivation.** If x is **discrete** (finite support), then  $\mathbb{P}(X=x)$  can be calculated by:

$$\hat{f}_X(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i = x\}$$
(2.1)

However, this does not work well if X takes many values & does not work at all if X has atomless distribution ( $\mathbb{P}(X = x) = 0$ , atomless). What are our options?

**Definition 2.1** (Histogram). A histogram has:

$$\hat{f}_X(x) = \frac{1}{nh} \sum_{i=1}^n \mathbb{1}\{x - \frac{h}{2} \le X_i \le x + \frac{h}{2}\}, \ (\bigstar)$$
 (2.2)

where (h; h > 0) is "bandwith" (tuning parameter).

**Remark** (Empirical CDF & Histogram). Recall that Empirical CDF is defined by:

$$\hat{F}_X(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \le x\},\tag{2.3}$$

which estimates  $F_X(x) = \mathbb{P}(X_i \leq x)$ . By definition of limits, we have:

$$f_X(x) = F_X'(x) \equiv \lim_{h \to 0} \frac{F_X(x + \frac{h}{2}) - F_X(x - \frac{h}{2})}{h}$$
 (2.4)

Then, for a small enough h, we know that:

$$\hat{f}_X(x) = \frac{\hat{F}_X(x + \frac{h}{2}) - \hat{F}_X(x - \frac{h}{2})}{h} \leftarrow \text{for some small } h$$
 (2.5)

$$= \frac{1}{nh} \sum_{i=1}^{n} \mathbb{1}\left\{x - \frac{h}{2} \le X_i \le x + \frac{h}{2}\right\} \leftarrow \text{by }(\bigstar)$$
 (2.6)

which is exactly the historgram at some fixed x!

**Definition 2.2** (Kernal Density Estimation; KDE). If we set  $\mathcal{K}(u) = \mathbb{1}\{\frac{-1}{2} \le u \le \frac{1}{2}\}$ , then the histogram at a fixed x is given by:

$$\hat{f}_X(x) = \frac{1}{nh} \sum_{i=1}^n \mathcal{K}\left(\frac{X_i - x}{h}\right)$$
 (2.7)

The function  $\mathcal{K}$  is called rectangular/uniform kernel.

Remark. We can also use the other PDF's kernel as well.

Example 2.1 (Triangular Kernel). 
$$\mathcal{K}(u) = \begin{cases} 1 - |u|, & \text{if } -1 \le u \le 1 \\ 0, & \text{else} \end{cases}$$

Example 2.2 (Epanechnikov Kernel). 
$$\mathcal{K}(u) = \begin{cases} \frac{3}{4}(1-u^2), & \text{if } -1 \leq u \leq 1\\ 0, & \text{else} \end{cases}$$

Example 2.3 (Gaussian Kernel). 
$$\mathcal{K}(u) = \phi(u) = \frac{1}{\sqrt{2\pi}}e^{\frac{-1}{2}u^2}, \ u \in \mathbb{R}$$

Fact 2.1 (Kernels). Consider the kernels of the Examples above:

|                                                    | Uniform (1) | Triangular (2) | Epanechnikov (3) | Gaussian (4)           |
|----------------------------------------------------|-------------|----------------|------------------|------------------------|
| $\int \mathcal{K}(u)du$ (Prob.)                    | 1           | 1              | 1                | 1                      |
| Smoothness                                         | Discrete    | $\mathcal C$   | ${\mathcal C}$   | $\mathcal{C}^{\infty}$ |
| $\int \mathcal{K}(u)^2 du \ (\bigstar)$            | 1           | 2/3            | 3/5              | $1/\sqrt{2\pi}$        |
| $\int u\mathcal{K}(u)du$ (Mean)                    | 0           | 0              | 0                | 0                      |
| $\int u^2 \mathcal{K}(u) du \ (\bigstar \bigstar)$ | 1/12        | 1/6            | 1/5              | 1                      |

Note:  $\int \mathcal{K}(u)^2 du$  is useful for  $\text{Var}(\hat{f}_X(x))$ .  $\int u^2 \mathcal{K}(u) du$  is useful for  $\text{Bias}(\hat{f}_X(x))$ .

The key is that we want  $(\bigstar)$  &  $(\bigstar \bigstar)$  to be *finite*  $(< \infty)$ . With an  $\mathcal{K}$  chosen, the density estimator is then:

$$\hat{f}_X(x) = \frac{1}{nh} \sum_{i=1}^n \mathcal{K}\left(\frac{X_i - x}{h}\right)$$
 (2.8)

#### 3 Bias-Variance

**Motivation.** As hinted before, we will discuss the Bias-variance trade-off (Spoiler at Fact 3.3). But we need to establish some terms first.

**Definition 3.1.** Fix an  $x \in int(supp(x))$ , then:

- Bias  $(\hat{f}_X(x)) = \mathbb{E}[\hat{f}_X(x)] f_X(x) \leftarrow \text{dist of my (exp'd) density estimator to the true density}$
- $\operatorname{Var}\left(\hat{f}_X(x)\right) = \mathbb{E}\left[\left(\hat{f}_X(x) \mathbb{E}[\hat{f}_X(x)]\right)^2\right]$

• MSE 
$$(\hat{f}_X(x)) = \mathbb{E}\left[(\hat{f}_X(x) - f_X(x))^2\right] = \left[\operatorname{Bias}\left(\hat{f}_X(x)\right)\right]^2 + \operatorname{Var}\left(\hat{f}_X(x)\right)$$
 ( $\spadesuit$ )

Example 3.1 (MSE). Let's actually show MSE  $(\hat{f}_X(x)) = [\text{Bias}(\hat{f}_X(x))]^2 + \text{Var}(\hat{f}_X(x))$  by the "add & subtract" trick [Spring 2023 Final Q2]:

$$MSE\left(\hat{f}_X(x)\right) = \mathbb{E}\left[\left(\hat{f}_X(x) - f_X(x)\right)^2\right]$$
(3.1)

$$= \mathbb{E}\left[\left(\hat{f}_X(x) - \mathbb{E}[\hat{f}_X(x)] + \mathbb{E}[\hat{f}_X(x)] - f_X(x)\right)^2\right]$$
(3.2)

$$= (\spadesuit) + 2\mathbb{E}\left[\left(\hat{f}_X(x) - \mathbb{E}[\hat{f}_X(x)]\right)\left(\mathbb{E}[\hat{f}_X(x)] - f_X(x)\right)\right]$$
(3.3)

$$= (\spadesuit) + 2 \underbrace{\mathbb{E}\left[\hat{f}_X(x) - \mathbb{E}[\hat{f}_X(x)]\right]}_{= \mathbb{E}[\hat{f}_X(x)] - \mathbb{E}[\hat{f}_X(x)] = 0} \mathbb{E}\left[\mathbb{E}[\hat{f}_X(x)] - f_X(x)\right]$$
(3.4)

$$= (\spadesuit) = \left[ \operatorname{Bias} \left( \hat{f}_X(x) \right) \right]^2 + \operatorname{Var} \left( \hat{f}_X(x) \right) \square$$
 (3.5)

**Lemma 3.1** (Bias KDE). Suppose  $(X_i)_{i=1}^n \stackrel{iid}{\sim} X \sim f_X$ . If:

① 
$$||f'''||_{\infty} < \infty$$
, and

Then, as  $h \to 0$  (i.e., choosing small h), the bias of density estimator is:

$$\operatorname{Bias}\left(\hat{f}_X(x)\right) = \frac{\mathbf{h}^2}{2} f_X''(x) \int u^2 \mathcal{K}(u) du + o(h^2)$$
(3.6)

**Remark.** Equation (3.6) means that Bias  $(\hat{f}_X(x)) \sim \mathbf{h^2} = O(h^2)$ .

*Proof.* By definition, we have Bias  $(\hat{f}_X(x)) = \underbrace{\mathbb{E}[\hat{f}_X(x)]}_{\circ} - f_X(x)$ . Let's look closely for  $\circledast$ :

$$\mathbb{E}[\hat{f}_X(x)] = \mathbb{E}\left[\frac{1}{nh}\sum_{i=1}^n \mathcal{K}\left(\frac{X_i - x}{h}\right)\right]$$
(3.7)

$$= \frac{1}{h} \mathbb{E} \left[ \mathcal{K} \left( \frac{X_i - x}{h} \right) \right] \leftarrow \text{ by identical distribution \& linearity}$$
 (3.8)

$$= \frac{1}{h} \int \mathcal{K}\left(\frac{\xi - x}{h}\right) f_X(\xi) d\xi \longleftarrow \text{let } u = \frac{\xi - x}{h}; \ du = \frac{1}{h} d\xi \tag{3.9}$$

$$= \int \mathcal{K}(u) f_X(x+hu) du \tag{3.10}$$

$$= \int \mathcal{K}(u) \underbrace{\left[ f_X(x) + \frac{(hu)^1}{1!} f_X'(x) + \frac{(hu)^2}{2!} f_X''(x) + \mathcal{O}\left((hu)^3\right) \right]}_{\text{Taylor Expansion}} du \qquad (3.11)$$

$$= f_X(x) \underbrace{\int \mathcal{K}(u)du}_{=1} + hf_X'(x) \underbrace{\int u\mathcal{K}(u)du}_{=0} + \frac{h^2}{2}f_X''(x) \int u^2\mathcal{K}(u)du + o(h(3)12)$$

$$= f_X(x) + \frac{h^2}{2} f_X''(x) \int u^2 \mathcal{K}(u) du + o(h^2)$$
(3.13)

where Equation (3.11) holds by Taylor expansion. So, the bias is then:

$$\operatorname{Bias}\left(\hat{f}_X(x)\right) = \mathbb{E}[\hat{f}_X(x)] - f_X(x) \tag{3.14}$$

$$= f_X(x) + \frac{h^2}{2} f_X''(x) \int u^2 \mathcal{K}(u) du + o(h^2) - f_X(x)$$
 (3.15)

$$= \frac{\mathbf{h}^2}{2} f_X''(x) \int u^2 \mathcal{K}(u) du + \mathrm{o}(h^2)$$
(3.16)

Note that if the curvature of the density:  $f_X''(x) \neq 0$ , then Bias  $(\hat{f}_X(x)) \sim \mathbf{h^2}$  as  $h \to 0$ .

**Remark.** Later we'll see a small h gives us smaller bias, but yields larger variance.

Question. How many times of Taylor Expansion we need to perform?

**Answer.** Until the first non-zero moment of density. In this case, we TE twice. See Spring24 TA Handout 11 Q2(a) for Higher-order Kernels (TE 4 times) & Q1(a) (TE 1 time).

**Lemma 3.2** (Variance KDE). Suppose  $(X_i)_{i=1}^n \stackrel{iid}{\sim} f_X$ . If:

① 
$$||f'''||_{\infty} < \infty$$
, and

② 
$$\int u^3 \mathcal{K}(u) du < \infty$$

Then, as  $h \to 0$  (i.e., choosing small h), the variance of density estimator is:

$$\operatorname{Var}\left(\hat{f}_X(x)\right) = \frac{1}{\mathbf{nh}} f_X(x) \int \mathcal{K}(u)^2 du + \operatorname{o}\left(\frac{1}{nh}\right)$$
 (3.17)

**Remark.** The proof details were left as exercises and ended up in Spring 2024 Final. I am not sure I completed it correctly but here is what I put on the exam.

*Proof.* Similarly, by definition of  $Var(\hat{f}_X(x))$ , we have:

$$\operatorname{Var}\left(\hat{f}_X(x)\right) = \operatorname{Var}\left(\frac{1}{nh}\sum_{i=1}^n \mathcal{K}\left(\frac{X_i - x}{h}\right)\right)$$
(3.18)

$$= \frac{1}{n^2 h^2} \operatorname{Var} \left( \sum_{i=1}^n \mathcal{K} \left( \frac{X_i - x}{h} \right) \right) \leftarrow \text{by independent}$$
 (3.19)

$$= \frac{1}{nh^2} \operatorname{Var}\left(\mathcal{K}\left(\frac{X_i - x}{h}\right)\right) \leftarrow \text{ by identical}$$
 (3.20)

$$= \frac{1}{nh^2} \left[ \underbrace{\mathbb{E}\left[\mathcal{K}\left(\frac{X_i - x}{h}\right)^2\right]}_{\equiv \mathcal{A}} - \underbrace{\mathbb{E}\left[\mathcal{K}\left(\frac{X_i - x}{h}\right)\right]^2}_{\equiv \mathcal{B}} \right] (\bigstar)$$
 (3.21)

Let's derive  $\mathcal{A}$  and  $\mathcal{B}$  separately:

$$\mathcal{A} \equiv \mathbb{E}\left[\mathcal{K}\left(\frac{X_i - x}{h}\right)^2\right] \tag{3.22}$$

$$= \int \mathcal{K} \left(\frac{\xi - x}{h}\right)^2 f_X(\xi) d\xi \longleftarrow \text{let } u = \frac{\xi - x}{h}; \ du = \frac{1}{h} d\xi \tag{3.23}$$

$$= h \int \mathcal{K}(u)^2 f_X(x+hu) du \tag{3.24}$$

$$= h \int \mathcal{K}(u)^{2} \left[ f_{X}(x) + \frac{(hu)^{1}}{1!} f'_{X}(x) + O\left((hu)^{2}\right) \right] du$$
 (3.25)

$$= hf_X(x) \int \mathcal{K}(u)^2 du + hf_X'(x) \underbrace{\int u\mathcal{K}(u)du}_{0} + o(h)$$
(3.26)

$$= h f_X(x) \int \mathcal{K}(u)^2 du + o(h)$$
(3.27)

And,

$$\mathcal{B} \equiv \mathbb{E}\left[\mathcal{K}\left(\frac{X_i - x}{h}\right)\right]^2 \tag{3.28}$$

$$= \left[ \int \mathcal{K} \left( \frac{\xi - x}{h} \right) f_X(\xi) d\xi \right]^2 \longleftarrow \text{let } u = \frac{\xi - x}{h}; \ du = \frac{1}{h} d\xi \tag{3.29}$$

$$= \left[ h \int \mathcal{K}(u) f_X(x + hu) du \right]^2 \tag{3.30}$$

$$= \left[ h \int \mathcal{K}(u) \left[ f_X(x) + \frac{(hu)^1}{1!} f_X'(x) + \mathcal{O}\left((hu)^2\right) \right] du \right]^2$$
 (3.31)

$$= \left[ h f_X(x) + o(h) \right]^2 \tag{3.32}$$

$$= O(h^2) (3.33)$$

At Eqn (3.25) and (3.31) we perform Taylor expansions just as in **Bias KDE**. So now ( $\bigstar$ ) becomes:

$$\frac{1}{nh^2} \left[ \mathbb{E} \left[ \mathcal{K} \left( \frac{X_i - x}{h} \right)^2 \right] - \mathbb{E} \left[ \mathcal{K} \left( \frac{X_i - x}{h} \right) \right]^2 \right] = \frac{1}{nh^2} \left[ h f_X(x) \int \mathcal{K}(u)^2 du + o(h) + O(h^2) \right] \\
= \frac{1}{nh} f_X(x) \int \mathcal{K}(u)^2 du + o(\frac{1}{nh}) \tag{3.34}$$

Note that as  $h \to 0$ ,  $Var(\hat{f}_X(x)) \nearrow \infty$ .

Fact 3.3 (Bias-Variance trade-off). Now the trade-off should be obvious:

- Bias  $(\hat{f}_X(x)) = \frac{\mathbf{h}^2}{2} f_X''(x) \int u^2 \mathcal{K}(u) du + o(h^2) \nearrow 0$  as  $h \to 0$
- $\operatorname{Var}\left(\hat{f}_X(x)\right) = \frac{1}{nh} f_X(x) \int \mathcal{K}(u)^2 du + \operatorname{o}\left(\frac{1}{nh}\right) \nearrow \infty \text{ as } h \to 0 \text{ (fixed } n)$

So, it's either (small bias, large variance)  $\leftrightarrow$  (large bias, small variance).

**Remark.** See Harold's notes for MSE and optimal bandwidth selection  $(h^{\text{opt}} \sim n^{\frac{-1}{5}})$ , discussion of parametrics vs nonparametrics, and results of Consistency & AN for nonparametrics.

#### References

Hansen, B. E. (2022). Econometrics. Princeton University Press. https://users.ssc.wisc.edu/~bhansen/econometrics/