Lec 10: Nonparametric Model (ML)

Fric Hsienchen Chu*
Spring, 2024

(®) Suggested readings: Hansen (2022), Ch19.

1 Nonparametric & ML

Overview. Unless an economic model restricts the form of m(z) to a parametric function,
m(x) can take any nonlinear shape and is therefore nonparametric.

Y =m(X)+e, E[g|X]=0 (1.1)

Here, the parameter of interest m(X) = E[Y|X] is infinite dimensional. In particular, we

may want to discuss kernel density estimators of m(z).

Question. How do we estimate E[Y|X = 2| = m(z), where X has continuum supp?

Answer. There are several ways:

@ M(r) = iy X Vi, where N(2) = {i=1,--- ,n:a; "close' to x}
N@)| i)
— k-nearest neighbors (KNN), Regression trees, - - -

@ m(z) =EY|X =z] = [y fy)x(ylz)dy = fyf‘jef(i((’jgf)dy
— [t suffices to estimate the density fyx & fx!

® Machine Learning ("Modern Nonparametrics")

 Bias—variance Trade—off (3)
o Curse of dimensionality

o Tuning Parameter Selection
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2 Kernel Density Estimation

Motivation. If z is discrete (finite support), then IP(X = z) can be calculated by:
A 1 X
Fx(w) = =3 1{Xi =z} (2.1)
i=1

However, this does not work well if X takes many values & does not work at all if X has
atomless distribution (IP(X = x) = 0, atomless). What are our options?

Definition 2.1 (Histogram). A histrogram has:

fx(z) = nl}Lg:lﬂ{x—géXi §m+g}, (%) (2.2)

where (h;h > 0) is "bandwith" (tuning parameter).

Remark (Empirical CDF & Histogram). Recall that Empirical CDF is defined by:

A

Fy(z) = le SI(X, < 1), (2.3)
=1

which estimates Fx(z) = IP(X; < x). By definition of limits, we have:

Fx(l’-l-%)—Fx(l’—%)

_ — 1
fx(z) = Fx(z) = lim N (2.4)
Then, for a small enough h, we know that:
A )3 hy_ f _h
fX([L') = X(ZL’ + 2) h X(x 2) <— for some small h (25)
1 & h h
= %;ﬂ{x—gﬁXi§$+§}<—by(*) (2.6)

which is exactly the historgram at some fixed z!

Definition 2.2 (Kernal Density Estimation; KDE). If we set K(u) = 1{Z} <u < 3},
then the histogram at a fixed x is given by:

fx(z) = nlhéic (Xh_x> (2.7)

The function K is called rectangular/uniform kernel.




Remark. We can also use the other PDF’s kernel as well.

. I—ju, if-1<u<1
Example 2.1 (Triangular Kernel). K(u) =
0, else

. 31—w?), if-1<u<1
Example 2.2 (Epanechnikov Kernel). K(u) =
0, else

Example 2.3 (Gaussian Kernel). (u) = ¢(u) = \/%6771“2, ueR

Fact 2.1 (Kernels). Consider the kernels of the Examples above:

Uniform Triangular Epanechnikov Gaussian

(1) (2) (3) (4)

[ K(u)du (Prob.) 1 1 1 1
Smoothness Discrete C C C>
[ K (u)?du (%) 1 2/3 3/5 1/27m
JuK(u)du (Mean) 0 0 0 0
JuK(u)du (%k)  1/12 1/6 1/5 1

Note: [ K(u)?du is useful for Var(fx(z)). [u?K(u)du is useful for Bias(fx (x)).

The key is that we want () & (%) to be finite (< o0). With an K chosen, the
density estimator is then:

fx(z) = nlh Zn:ic (th_ x) (2.8)

1=1




3 Bias—Variance

Motivation. As hinted before, we will discuss the Bias—variance trade—off (Spoiler at Fact
3.3). But we need to establish some terms first.

Definition 3.1. Fix an = € int (supp(x)), then:

» Bias (fX (.’I)) = ]E[fX (x)] — fX (l‘) <— dist of my (exp’d) density estimator to the true density

+ Var (fu@)) = B |(fx(e) - Elfx(o)) ]

« MSE (fx(z)) = E [(AX(Q;) _fx(x))z} — [Bias (fx(x))r—l—\/ar (Fx(@)) (@)

2

Example 3.1 (MSE). Let’s actually show MSE (fX (9[:)) = [Bias (fX (9[:)) + Var (fX(x))

by the "add & subtract" trick [Spring 2023 Final Q2] :

MSE (fx(@) = E|(fx(@) - fx (@)’
— E|(fx(@) - Elfx(@)] + Elfx(2)] - fx(2)) (3.2)
— (®)+2E | (Fx(@) - Elfx(@))) (Elfx@)] - fx(@)] 33
= (#)+2E [fx(2) = B[fx(@)]| E [E[/x ()] - fx(x)]  (34)
=E[fx(2)] = E[fx(z)] =0

= (&)= {Bias (fX(x)> i + Var (fX(a:)) O (3.5)

Lemma 3.1 (Bias KDE). Suppose (X;);_, WX~ fx. If
) Hf’”” < 00, and
©.9]
@ [udK(u)du < oo
Then, as h — 0 (i.e., choosing small h), the bias of density estimator is:

h2

Bias (fX(a:)) =5

1 (z) / WP (w)du + o(h?) (3.6)

Remark. Equation (3.6) means that Bias (fX (m)) ~h? = O(h?).



N

Proof. By definition, we have Bias (fX (:E)) =E[fx(z)] —fx(z). Let’s look closely for &:

—_———
®
A 1\ Xi — X
E[fx(z)] = E %i: K( 3 )] (3.7)
1 Xi—
= EIE IC ( h x)] <— by identical distribution & linearity (38)
= () (@) = ] (39)
= h X <—letu7T7 dufﬁdé .
K (u) fx(z + hu)du (3.10)

(z) + (hﬁ)lfg((x) + (h;)Q 7 (z)+ 0 ((hu)S)} du  (3.11)

>
=
=

Il
— Y— ==

Taylor Expansion

2
= fx(o) [ K(wduthfi(e) [k (u)dut" () [v2Kw)du+ ol

=1 =0
2
= fxl@)+ ) [ WK ()t o(r?) (3.13)

where Equation (3.11) holds by Taylor expansion. So, the bias is then:

Bias (fx(v)) = E[fx(2)] - fx(x) (3.14)
= Frbad+ o) [k (wduto(?) ~ el (315
= h; }'((x)/ule(u)dujLo(hQ) (3.16)

Note that if the curvature of the density: f%(z) # 0, then Bias (fX (9(:)) ~hZash—0. O

Remark. Later we’ll see a small A gives us smaller bias, but yields larger variance.

Question. How many times of Taylor Expansion we need to perform?
Answer. Until the first non-zero moment of density. In this case, we TE twice. See
Spring24 TA Handout 11 Q2(a) for Higher—order Kernels (TE 4 times) & Ql(a) (TE 1

time).




Lemma 3.2 (Variance KDE). Suppose (X;);-_; @fX. If:
"
O], <o
@ [udK(u)du < oo

Then, as h — 0 (i.e., choosing small h), the variance of density estimator is:

Var (fx () = —fx(e) [ K()du+of) (317)

Remark. The proof details were left as exercises and ended up in Spring 2024 Final. I am
not sure I completed it correctly but here is what I put on the exam.

Proof. Similarly, by definition of Var ( fx (x)), we have:

Var (fX(a:)) = Var (nlhzn:lC<th_$>) (3.18)
i=1
1 " Xi—x
= ——=Var K <— by independent 3.19
o (55 (457)) o o2
- nthvar (IC (th_ m) by identical (3.20)
1 Xl-—x 2] Xl-—a: ?
= Bl (B el (K)o ea
=A _ =B
Let’s derive A and B separately:
Xi—x 2

A= Efc( )] (322)

¢-a\’
= /IC( - > fx(g)deletuzgiTm; du:%dﬁ (3.23)
S / K (w)? fx (a + hu)du (3.24)

)l
= h/lC(u)2 Ifx(z)+ (hll) fx(z)+0 ((hu)z)] du (3.25)
- th(x)//C(u)Qdquhf;((x)/ux(u)du +o(h) (3.26)
—

= hfx() / K (u)2du + o(h) (3.27)
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And,

B = E K(Xih_l")r (3.28)
- //c< ) (5)d§r<_1em5h‘”; du = Lag (3.29)
_ h [x @ fX(x—l—hu)dur (3.30)

: 2
= |0 [ |pxte) + 0 ((n >)] du] (331
_ [_th(:c)-l—o(h)r (3.32)
— O(h?) (3.33)

At Eqn (3.25) and (3.31) we perform Taylor expansions just as in Bias KDE.

So now (%) becomes:

2
- K(X"f:"’")Q _E K(X}:xﬂ ] _ n;z [hpx(e) [ K(w)?du+o(h) +0(2)
- /IC )2du + o h) (3.34)
Note that as h — 0, Var(fx(z)) ~ oc. O

Fact 3.3 (Bias—Variance trade—off). Now the trade-off should be obvious:
« Bias (fx(x)) = h; Y (z) [uK(u)du+o(h?) /0ash—0

o Var (fX(a:)> = L fx(2) [ K(u)?du+o(;) / oo as h — 0 (fixed n)

So, it’s either (small bias, large variance) <+ (large bias, small variance).

Remark. See Harold’s notes for MSE and optimal bandwidth selection (h°P* ~ ns ), discus-
sion of parametrics vs nonparametrics, and results of Consistency & AN for nonparametrics.
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